THE RISE AND REEMERGENCE OF VIRAL ZOONOTIC DISEASES: A CONFLUENCE OF HUMAN ACTIONS AND MISJUDGMENTS

Main Article Content

Dildora Ergashevna Kadirova

Abstract

Zoonotic diseases are illnesses transmitted from vertebrate animals to humans. Although a variety of microbial agents, such as bacteria and parasites, are associated with zoonotic events, viruses constitute a significant proportion of emerging zoonotic diseases. Alarmingly, the 21st century has witnessed a sharp rise in the emergence and re-emergence of viral zoonotic diseases. Despite the millennia-long coexistence of humans and animals, human-driven activities have significantly increased the frequency of interactions between the two, elevating the risk of disease spillover. Factors like climate change, land-use alteration, and wildlife trade directly contribute to the (re-)emergence of these diseases, while globalization, geopolitical influences, and social dynamics facilitate their spread. This opinion piece explores the "intelligent" behavior of viruses and how they exploit anthropogenic factors to drive the (re-)emergence and spread of zoonotic diseases in our modern, interconnected world.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

THE RISE AND REEMERGENCE OF VIRAL ZOONOTIC DISEASES: A CONFLUENCE OF HUMAN ACTIONS AND MISJUDGMENTS. (2024). International Bulletin of Medical Sciences and Clinical Research, 4(9), 27-39. https://doi.org/10.37547/

References

Filho W.L., Ternova L., Parasnis S.A., Kovaleva M., Nagy G.J. Climate Change and Zoonoses: A Review of Concepts, Definitions, and Bibliometrics. Int. J. Environ. Res. Public Health. 2022;19:893. doi: 10.3390/ijerph19020893. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Varela K., Brown J.A., Lipton B., Dunn J., Stanek D., Behravesh C.B., Chapman H., Conger T.H., Vanover T., Edling T., et al. A Review of Zoonotic Disease Threats to Pet Owners: A Compendium of Measures to Prevent Zoonotic Diseases Associated with Non-Traditional Pets such as Rodents and Other Small Mammals, Reptiles, Amphibians, Backyard Poultry, and Other Selected Animals. Vector Borne Zoonotic Dis. 2022;22:303–360. doi: 10.1089/vbz.2022.0022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Roberts M., Dobson A., Restif O., Wells K. Challenges in Modelling the Dynamics of Infectious Diseases at the Wildlife–Human Interface. Epidemics. 2021;37:100523. doi: 10.1016/j.epidem.2021.100523. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Shanks S., van Schalkwyk M.C.I., Cunningham A.A. A Call to Prioritise Prevention: Action is Needed to Reduce the Risk of Zoonotic Disease Emergence. Lancet Reg. Health Eur. 2022;23:100506. doi: 10.1016/j.lanepe.2022.100506. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Furuse Y., Oshitani H. Viruses that Can and Cannot Coexist with Humans and the Future of SARS-CoV-2. Front. Microbiol. 2020;11:583252. doi: 10.3389/fmicb.2020.583252. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Warren C.J., Sawyer S.L. How Host Genetics Dictates Successful Viral Zoonoses. PLoS Biol. 2019;17:e3000217. doi: 10.1371/journal.pbio.3000217. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Weiss R.A., Sankaran N. Emergence of Epidemic Diseases: Zoonoses and Other Origins. Fac. Rev. 2022;11:2. doi: 10.12703/r/11-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Bedenham G., Kirk A., Luhano U., Shields A. The Importance of Biodiversity Risks: Link to Zoonotic Diseases. Br. Actuar. J. 2022;27:e10. doi: 10.1017/S1357321722000058. [CrossRef] [Google Scholar]

Piret J., Boivin G. Pandemics Throughout History. Front. Microbiol. 2021;11:631736. doi: 10.3389/fmicb.2020.631736. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Littman R.J., Littman M.J. Galen and the Antonine Plague. Am. J. Philol. 1973;94:243–255. doi: 10.2307/293979. [PubMed] [CrossRef] [Google Scholar]

Haileamlak A. Pandemics will be More Frequent. Ethiop. J. Health Sci. 2022;32:228. [PMC free article] [PubMed] [Google Scholar]

Huremović D. Brief History of Pandemics (Pandemics Throughout History) Psychiatry Pandemics. 2019;16:7–35. [Google Scholar]

Trovato M., Sartorius R., D’Apice L., Manco R., De Berardinis P. Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Front. Immunol. 2020;11:2130. doi: 10.3389/fimmu.2020.02130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Jackson A.C. Update on Rabies. Res. Rep. Trop. Med. 2011;2:31–43. doi: 10.2147/RRTM.S16013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Fooks A.R., Cliquet F., Finke S., Freuling C., Hemachudha T., Mani R.S., Müller T., Nadin-Davis S., Picard-Meyer E., Wilde H., et al. Rabies. Nat. Rev. Dis. Primers. 2017;3:17091. doi: 10.1038/nrdp.2017.91. [PubMed] [CrossRef] [Google Scholar]

Fisher C.R., Streicker D.G., Schnell M.J. The Spread and Evolution of Rabies Virus: Conquering New Frontiers. Nat. Rev. Microbiol. 2018;16:241–255. doi: 10.1038/nrmicro.2018.11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wang M.K., Lim S.-Y., Lee S.M., Cunningham J.M. Biochemical Basis for Increased Activity of Ebola Glycoprotein in the 2013–16 Epidemic. Cell Host Microbe. 2017;21:367–375. doi: 10.1016/j.chom.2017.02.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B., et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812–827. doi: 10.1016/j.cell.2020.06.043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Magazine N., Zhang T., Wu Y., McGee M.C., Veggiani G., Huang W. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses. 2022;14:640. doi: 10.3390/v14030640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Alleman M.M., Jorba J., Henderson E., Diop O.M., Shaukat S., Traoré M.A., Wiesen E., Wassilak S.G.F., Burns C.C. Update on Vaccine-Derived Poliovirus Outbreaks—Worldwide, January 2020–June 2021. MMWR Morb. Mortal Wkly. Rep. 2021;70:1691–1699. doi: 10.15585/mmwr.mm7049a1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Bigouette J.P., Henderson E., Traoré M.A., Wassilak S.G.F., Jorba J., Mahoney F., Bolu O., Diop O.M., Burns C.C. Update on Vaccine-Derived Poliovirus Outbreaks—Worldwide, January 2021–December 2022. MMWR Morb. Mortal. Wkly. Rep. 2023;72:366–371. doi: 10.15585/mmwr.mm7214a3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Quadeer A.A., Barton J.P., Chakraborty A.K., McKay M.R. Deconvolving Mutational Patterns of Poliovirus Outbreaks Reveals its Intrinsic Fitness Landscape. Nat. Commun. 2020;11:377. doi: 10.1038/s41467-019-14174-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Gonçalves-Carneiro D., Bieniasz P.D. Mechanisms of Attenuation by Genetic Recoding of Viruses. mBio. 2021;12:e02238-20. doi: 10.1128/mBio.02238-20. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Similar Articles

You may also start an advanced similarity search for this article.