UASI-DERIVATIONS OF LOW-DIMENSIONAL LEIBNIZ ALGEBRAS AND THEIR PROPERTIES
Main Article Content
Abstract
The article presents the results obtained about quasi-derivations of small-dimension Leibniz algebras and their properties.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Albeverio S., Ayupov Sh.A., Kudaybergenov K.K., Nurjanov B.O., Local derivations on algebras of measurable operators. Comm. in Cont. Math., 2011, Vol. 13, No. 4, p. 643–657.
Ayupov Sh.A., Kudaybergenov K.K., Local derivations on finite-dimensional Lie algebras. Linear Alg. and Appl., 2016, Vol. 493, p. 381–388.
Abdurasulov K., Kaygorodov I., Khudoyberdiyev A.: The algebraic and geometric classification of nilpo-
tent Leibniz algebras,
Abdurasulov, K., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic classification of nilpotent Novikov algebras. Filomat 37(20), 6617–6664 (2023)
Abdurasulov K., Kaygorodov I., Khudoyberdiyev A.: The algebraic and geometric classification of nilpotent Leibniz algebras, arXiv:2307.00289
Abdurasulov, K., Khudoyberdiyev, A., Ladra, M., Sattarov, A.: Pre-derivations and description of nonstrongly nilpotent filiform Leibniz algebras. Commun Math 29(2), 187–213 (2021)
Ayupov, Sh., Khudoyberdiyev, A., Yusupov, B.: Local and 2-local derivations of solvable Leibniz algebras. Internat. J. Algebra Comput. 30(6), 1185–1197 (2020)
Ayupov, Sh., Khudoyberdiyev, A., Shermatova, Z.: On complete Leibniz algebras. Internat. J. Algebra Comput. 32(2), 265–288 (2022)
Musayev S.X. : Kichik o'lchamli leybnits algebralarining kvazi-differensiyalashlari va ularning xossalari. Educational research in universal sciences, 3(3), 112–119. https://doi.org/10.5281/zenodo.10836664
Musayev S.X. :Tabiiy usulda graduirlangan filiform leybnits algebralarining kvazi-differensiallashlari tasnifi. “Raqamli texnologiyalar asosida ta’lim jarayonini takomillashtirish” conference.(2024) Toshkent.
K. Ruzmetov, A. Faiziev, S. Murodov, O. Kurbonbekova. E3S Web of Conf. 389 03080 (2023). DOI: 10.1051/e3sconf/202338903080. https://doi.org/10.1051/e3sconf/202338903080