
A NEW METHOD OF OBTAINING NANOCARBON AND HYDROGEN FROM THE PROPANE-BUTANE FRACTION
Nilufar Tursunova , Department of Inorganic Chemistry and Materials Science, Samarkand State University, Samarkand, Uzbekistan Normurot Fayzullaev , Department of Polymer Chemistry and Chemical Technology, Samarkand State University, Samarkand, Uzbekistan Noryigit Musulmonov , Department of Inorganic Chemistry and Materials Science, Samarkand State University, Samarkand, UzbekistanAbstract
In the work, the kinetic laws of the process of obtaining nanocarbon and hydrogen from the propane-butane fraction were studied under differential reactor conditions. Experiments were conducted in a differential-mode, flow-through laboratory setup consisting of a vertical stainless steel reactor with a 32 mm internal diameter and a length of 500 mm. The initial period (≈10 min) is the stage of reduction of Ni, Co, Fe and Mo oxides to metal, accumulation of free carbon and formation of carbon nanotube particles, the active phase of synthesis lasts 9÷10 min and ensures η within 22 gc/gcat.
Keywords
carbon storage compounds, catalyst, contact time, hydrogen, nanocarbon, temperature
References
Chen X, Zhang Q, Li J, Yang M, Zhao N, Xu FJ. Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS nano. 12(6) (2018) 5646-56. https://doi.org/10.1021/acsnano.8b01440.
Zhao N, Fan W, Zhao X, Liu Y, Hu Y, Duan F, Xu FJ. Polycation–Carbon Nanohybrids with Superior Rough Hollow Morphology for the NIR-II Responsive Multimodal Therapy. ACS applied materials & interfaces. 12(10) (2020) 11341-52. https://doi.org/10.1021/acsami.9b22373.
Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual‐functionalized nano‐graphene oxide for photothermally enhanced gene delivery. Small. 9(11) (2013) 1989-97. https://doi.org/10.1002/smll.201202538.
Naldini L. Gene therapy returns to centre stage. Nature. 526(7573) (2015) 351-60. https://doi.org/10.1038/nature15818.
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. International journal of pharmaceutics. 459(1-2) (2014) 70-83. https://doi.org/10.1016/j.ijpharm.2013.11.041.
Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid carbon-based materials for gene delivery in cancer therapy. Journal of Controlled Release. 318 (2020) 158-75. https://doi.org/10.1016/j.jconrel.2019.12.030.
de Menezes BR, Rodrigues KF, da Silva Fonseca BC, Ribas RG, do Amaral Montanheiro TL, Thim GP. Recent advances in the use of carbon nanotubes as smart biomaterials. Journal of Materials Chemistry B. 7(9) (2019) 1343-60. https://doi.org/10.1039/C8TB02419G.
Hu Y, Liu S, Li X, Yuan T, Zou X, He Y, Dong X, Zhou W, Yang Z. Facile preparation of biocompatible poly (l-lactic acid)-modified halloysite nanotubes/poly (ε-caprolactone) porous scaffolds by solvent evaporation of Pickering emulsion templates. Journal of Materials Science. 53(20) (2018) 14774-88. https://doi.org/10.1007/s10853-017-1342-9.
Liu H, Wang ZG, Liu SL, Yao X, Chen Y, Shen S, Wu Y, Tian W. Intracellular pathway of halloysite nanotubes: potential application for antitumor drug delivery. Journal of Materials Science. 54(1) (2019) 693-704. https://doi.org/10.1007/s10853-018-2775-5.
Rouwenhorst KH, Krzywda PM, Benes NE, Mul G, Lefferts L. Ammonia production technologies. Techno-Economic Challenges of Green Ammonia as Energy Vector. Academic Press: Cambridge, MA, USA, 14 (2020) 41-84. https://doi.org/10.1016/C2019-0-01417-3.
Kim S, Kim J. The optimal carbon and hydrogen balance for methanol production from coke oven gas and Linz-Donawitz gas: Process development and techno-economic analysis. Fuel. 266 (2020) 117093-117095. https://doi.org/10.1016/j.fuel.2020.117093.
Monnerie N, Gan PG, Roeb M, Sattler C. Methanol production using hydrogen from concentrated solar energy. International Journal of Hydrogen Energy. 45(49) (2020) 26117-25. https://doi.org/10.1016/j.ijhydene.2019.12.200.
N. X. Musulmonov and N.I. Fayzullaev. Textural characteristics of zinc acetate catalyst, AIP Conference Proceedings 2432, 050015 (2022). https://doi.org/10.1063/5.0090920.
Q. Bukhorov, Sh. Ch. Aslanov, and N. I. Fayzullaev. Direct extraction of dimethyl ether from synthesis gas, AIP Conference Proceedings 2432, 050013 (2022). https://doi.org/10.1063/5.0090210.
Dijkstra, A.J.; van Duijn, G. Vegetable Oils: Oil Production and Processing. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA. (2016) 373–380. https://doi.org/10.1016/B978-0-12-384947-2.00707-8.
Sun, Z.-Y. Hydrogen energy. In Sustainable Fuel Technologies Handbook; Academic Press: Cambridge, MA, USA, 2021 339–365. https://doi.org/10.1016/j.ijhydene.2012.08.125.
Yürüm Y. Department of Chemistry Hacettepe University. Hydrogen Energy System: Production and Utilization of Hydrogen and Future Aspects. (1995) 295:15. https://doi.org/10.1007/978-94-011-0111-0.
Balat M. Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and effects of catalyst on hydrogen yield. Energy Sources, Part A. 30(6) (2008) 552-64. https://doi.org/10.1080/15567030600817191.
Franchi G, Capocelli M, De Falco M, Piemonte V, Barba D. Hydrogen production via steam reforming: A critical analysis of MR and RMM technologies. Membranes. 10(1) (2020) 10. https://doi.org/10.3390/membranes10010010.
Koskin AP, Zibareva IV, Vedyagin AA. Conversion of rice husk and nutshells into gaseous, liquid, and solid biofuels. InBiorefinery of alternative resources: targeting green fuels and platform chemicals. Springer, Singapore. (2020) 171-194). https://doi.org/10.1007/978-981-15-1804-1_8.
Shimamoto D, Muramatsu H, Fujisawa K, Hayashi T, Kim YA, Endo M. Synthesis of catalytic chemical vapor grown carbon fibers: Carbon nanotube and carbon nanofiber. Carbon. 2(49) (2011) 738. http://dx.doi.org/10.1016%2Fj.carbon.2010.09.017.
Docekal J. Hydrogen production from hydrocarbons. International journal of hydrogen energy. 11(11) (1986) 709-14. https://doi.org/10.1016/0360-3199(86)90139-4.
Li Y, Chen J, Qin Y, Chang L. Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst. Energy & Fuels. 14(6) (2000) 1188-94. https://doi.org/10.1021/ef0000781.
Muradov N.Z., Veziroǧlu T.N. From hydrocarbon to hydrogen–carbon to hydrogen economy. International journal of hydrogen energy. 30(3) (2005) 225-37. https://doi.org/10.1016/j.ijhydene.2004.03.033.
Rahman, M.S.; Croiset, E.; Hudgins, R.R. Catalytic Decomposition of Methane for Hydrogen Production. Top. Catal. 37 (2006) 137–145. https://doi.org/10.1007/s11244-006-0015-8.
Oensan Z.I. Catalytic processes for clean hydrogen production from hydrocarbons. Turkish Journal of Chemistry. 31(5) (2007) 531-50. https://journals.tubitak.gov.tr/chem/vol31/iss5/14.
Nguyen M.C., Lee H, Ihm J. Hydrogen storage using functionalized saturated hydrocarbons. Solid state communications. 147(9-10) (2008) 419-22. https://doi.org/10.1016/j.ssc.2008.06.009.
Ahmed S, Aitani A, Rahman F, Al-Dawood A, Al-Muhaish F. Decomposition of hydrocarbons to hydrogen and carbon. Applied Catalysis A: General. 359(1-2) (2009) 1-24. https://doi.org/10.1016/j.apcata.2009.02.038.
Ibrahim A.A., Fakeeha A.H., Al-Fatesh A.S., Abasaeed A.E., Khan W.U. Methane decomposition over iron catalyst for hydrogen production. International Journal of Hydrogen Energy. 40(24) (2015) 7593-600. https://doi.org/10.1016/j.ijhydene.2014.10.058.
Tezel E, Figen H.E., Baykara S.Z. Hydrogen production by methane decomposition using bimetallic Ni–Fe catalysts. International Journal of Hydrogen Energy. 44(20) (2019) 9930-40. https://doi.org/10.1016/j.ijhydene.2018.12.151.
Mamadoliev I.I., Khalikov K.M., Fayzullaev N.I. Synthesis of high silicon of zeolites and their sorption properties. International Journal of Control and Automation. 3(2) (2020). 703-9. https://www.elibrary.ru/item.asp?id=43272397.
Mamadoliev I.I., Fayzullaev N.I. Optimization of the activation conditions of high silicon zeolite. International Journal of Advanced Science and Technology. 29(3) (2020) 6807-13. http://sersc.org/journals/index.php/IJAST/article/view/7333.
S.Yu. Bobomurodova., N.I. Fayzullaev., K.A. Usmanova. Catalytic Aromatization of Oil Satellite Gases, International Journal of Advanced Science and Technology, 29(05) (2020) 3031 - 3039. http://sersc.org/journals/index.php/IJAST/article/view/11606.
N. S. Tursunova, N. I. Fayzullaev. Kinetics of the Reaction of Oxidative Dimerization of Methane. International Journal of Control and Automation, 13(02) (2020). 440 - 446. http://sersc.org/journals/index.php/IJCA/article/view/9897.
Fayzullaev, N. I., S. Yu Bobomurodova, G. A. Avalboev, M. B. Matchanova, and Z. T. Norqulova. Catalytic change of C1-C4-alkanes. International Journal of Control and Automation 13(2) (2020) 827-835. http://sersc.org/journals/index.php/IJCA/article/view/11230.
Ibodullayevich, F. N., B. S. Yunusovna, and X. D. Anvarovna. "Physico-chemical and texture characteristics of Zn-Zr/VKTS catalyst. Journal of Critical Reviews. 7(7) (2020) 917-920. http://dx.doi.org/10.31838/jcr.07.07.166.
Aslanov, S.C., Buxorov, A.Q., Fayzullayev, N.I. Catalytic synthesis of С2-С4-alkenes from dimethyl ether. International Journal of Engineering Trends and Technology, 69(4) 2021 67–75. http://dx.doi.org/10.14445/22315381/IJETT-V69I4P210.
F N Temirov, J Kh Khamroyev, N I Fayzullayev, G Sh Haydarov and M Kh Jalilov. Hydrothermal synthesis of zeolite HSZ-30 based on kaolin. IOP Publishing, IOP Conf. Series: Earth and Environmental Science. 839 (2021) 042099. http://dx.doi.org/10.1088/1755-1315/839/4/042099.
H. N. Xolmirzayeva, N. I. Fayzullayev. Obtaining nanocarbon from local raw materials and studying its textural and sorption properties. International Journal of Engineering Trends and Technology. 70(2) (2022) 163-171. http://dx.doi.org/10.14445/22315381/IJETT-V70I2P219.
Article Statistics
Downloads
Copyright License

This work is licensed under a Creative Commons Attribution 4.0 International License.