LAVRENTOV'S METHOD FOR KARLEMAN'S FORMULA.
Sh.S.Boboxonov , Karshi Engineering and Economic Institute, Karshi Qashqadaryo,O’zbekiston.Abstract
One of the important formulas for know holomorphic functions is is Couchy”s integral formula. Using this formula, the function given at the boundary can be restored to the holomorphic within the field. Carleman formulas deal with te problem the holomorphic restoration of a given function within a boundary there are several methods of calculatinhg the Carleman formula,in particular Goluzin-Krilov, Kitminov,Lavrentov methods and soon.
Keywords
References
Шабат Б.В.,Введение в комплексный анализ,часть 1, М., “Наука”, 1985г.
Л.А.Айзенберг. “Формулы Карлемана в комплексном анализе” Новосибирск«Наука» 1990г.247с
Ibragimov-Dots, S., Xudoyqulov-Ass, J., & Boboxonov-Ass, S. (2022). DIRIXLE PROBLEM FOR A (z)-HARMONIC FUNCTION. Web of Scientist: International Scientific Research Journal, 3(9), 124-126.
Ibragimov, S. L., Xudoyqulov, J. X., & Boboxonov, S. S. (2022). INTEGRATION BY SUBSTITUTION. Current Issues of Bio Economics and Digitalization in the Sustainable Development of Regions, 381-385.
Xudoyqulov, J., & Boboxonov, S. (2022). GOLIZIN-KRYLOV METHOD FOR-ANALYTIC FUNCTION.
Eshmatov, B. E., Boboxonov, S., & Omonova, N. (2022). On the solvability of problems with an oblique derivative for a mixed parabolic-hyperbolic equation. Web of Scientist: International Scientific Research Journal, 3(3), 536-538.
Tufliyev, E., & Boboxonov, S. (2023). PROOF OF CAUCHY'S THEOREM IN GENERAL. CONCEPT OF HOMOTOPY PATH. Евразийский журнал академических исследований, 3(3 Part 2), 48-51.
Bobokhonov, S. .S., & Hamrayev , S. (2023). Cauchy’s integral formula. Academic International Conference on Multi-Disciplinary Studies and Education, 1(5), 87–89. Retrieved from
Bobokhonov, S. .S., & Namozov , D. (2023). A generalization of Cauchy’s theorem. International Conference on Science, Engineering & Technology, 1(1), 88–89. Retrieved from
Бозаров Д. У. Determinantlar mavzusini mustaqil oqishga doir misollar //Журнал Физико-математические науки. – 2022. – Т. 3. – №. 1.
Bozarov D. U. IKKI O ‘ZGARUVCHILI FUNKSIYANING EKSTREMUMIDAN FOYDALANIB, TEKISLIKDAGI IKKITA FIGURA ORASIDAGI MASOFANI TOPISH //Oriental renaissance: Innovative, educational, natural and social sciences. – 2022. – Т. 2. – №. 11. – С. 292-301.
Uralovich B. D. CHIZIQLI ALGEBRAIK TENGLAMALAR SISTEMALARIGA OID MASALALAR //Science and innovation. – 2022. – Т. 1. – №. A2. – С. 163-171.
Bozarov D. CHIZIQLI VA KVADRATIK MODELLASHTIRISH MAVZUSINI MUSTAQIL O ‘RGANISHGA DOIR MISOLLAR //Eurasian Journal of Mathematical Theory and Computer Sciences. – 2022. – Т. 2. – №. 6. – С. 24-28.
Allamova M., Bozarov D. TRIGONOMETRIK TENGSIZLIKLAR YECHIMLARINING INNOVATSION QO ‘LLANILISHI //Eurasian Journal of Mathematical Theory and Computer Sciences. – 2023. – Т. 3. – №. 1. – С. 75-78.
Dilmurod B., Islom A. PARALLEL IKKITA TO’G’RI CHIZIQ ORASIDAGI MASOFA //Innovations in Technology and Science Education. – 2023. – Т. 2. – №. 8. – С. 465-478.
B.B.Qarshiyev., Z.Absamatov, Педагогическая деятельность как явление социалъно – педагогической. Научно-методический журнал Проблемы педагогики № 2 (47),2020 C. 100-103.
B.B.Qarshiyev., Z.Absamatov, Формиравание и совершенствование педагогических навыков в процессе обучения. Научно-методический журнал Вестник науки и образавания 2020. № 6. (84) Часть 1 С 79-84
Б.Э .Эшматов, З.А. Абсаматов, Б.Б. Каршиев, О НЕКОТОРЫХ ЗАДАЧАХ ДЛЯ УРАВНЕНИЯ ЧЕТВЕРТОГО ПОРЯДКА - SCIENCE AND WORLD, 2013
Article Statistics
Downloads
Copyright License
This work is licensed under a Creative Commons Attribution 4.0 International License.