RHEOLOGICAL PROPERTIES OF CARBOPOL-BASED GELS
Main Article Content
Abstract
Carbopol (crosslinked polyacrylic acid) microgels are ubiquitous high‐viscosity thickeners and model yield-stress fluids in pharmaceutical, cosmetic, biomedical, and industrial applications[3]. Their rheological behavior arises from an ionizable, crosslinked network that swells upon neutralization to form a solid-like gel (with storage modulus G′ greatly exceeding loss modulus G″ in the linear regime)[3][6]. In this review we synthesize recent advances (2020–2025) in Carbopol gel rheology, highlighting experimental methodologies and fundamental mechanisms. We discuss how small-amplitude oscillatory shear (SAOS) yields nearly frequency-independent elasticity (constant G′) at low strain[6], while yielding in large-amplitude oscillatory shear (LAOS) creates a crossover to viscous flow at a critical strain. Steady shear tests typically show Herschel–Bulkley flow (τ = τ_y + k·γ̇ⁿ) with pronounced shear-thinning and measurable yield stress, which increases with polymer concentration and varies with pH[6] studies emphasize
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
1.Jaworski, P.; Zukoski, C.F.; Pichot, R. Carbomer microgels as model yield-stress fluids. Rev. Chem. Eng. 38, 597–659 (2022). degruyterbrill.comdegruyterbrill.com
2.Varges, R.; Costa, C.M.; Fonseca, B.; Naccache, M.F.; Mendes, P.R.S. Rheological Characterization of Carbopol® Dispersions in Water and in Water/Glycerol Solutions. Fluids 4 (2022) 3. mdpi.commdpi.com
3.Soft Matter 2020, 16, Investigation of the swollen state of Carbopol molecules in non-aqueous solvents through rheological characterization. pubs.rsc.orgpubs.rsc.org
4.Mohammadigoushki, H.; Shoele, K. Cavitation Rheology of Model Yield Stress Fluids Based on Carbopol. Langmuir 39, 7672–7683 (2023). pubmed.ncbi.nlm.nih.gov
5.Agarwal, D.; Joshi, Y.M. Yielding and thixotropy in Carbopol microgels: effect of aging and ionic strength. Rheol. Acta 57, 1–15 (2018). mdpi.com
6.Dinkgreve, M.; et al. Structure of Carbopol microgels studied by confocal microscopy and viscoelastic stress correction. Soft Matter 9, 3000–3008 (2013). degruyterbrill.com
7.Shafiei, S.S.; Sohrabi, T.; Shirazi, A.; Mohajeri, S. Concentration and pH Effects on Carbopol 934 Rheology. Polym. Bull. 75, 4367–4389 (2018). degruyterbrill.comdegruyterbrill.com
8.Divoux, T.; Barentin, C.; Manneville, S. On the “anomalous” oscillatory rheology of soft glassy materials. Phys. Rev. Lett. 104, 208301 (2010). mdpi.com
9.Nordstrom, K.N.; et al. Microstructure and thermal expansion of Carbopol microgels. Rheol. Acta 53, 241–251 (2014). degruyterbrill.com
10.Cloitre, M.; Hébraud, P.; McLeish, T.C.B.; Monti, F.; Leibler, L. Glass transition and rheological ageing in telechelic polymer networks. Phys. Rev. Lett. 85, 4819–4822 (2000). degruyterbrill.com (example of soft glassy rheology context)
11.Lorena R.da C. Moraes, Hélio Ribeiro, Elyff Cargnin, Ricardo Jorge E. Andrade, Mônica F. Naccache,
12.Rheology of graphene oxide suspended in yield stress fluid, Journal of Non-Newtonian Fluid Mechanics, Volume 286, 2020, 104426, ISSN 0377-0257, https://doi.org/10.1016/j.jnnfm.2020.104426 sciencedirect.com