

COENZYME Q10 AND ITS ROLE IN MITOCHONDRIAL ENERGY RESTORATION AFTER MYOCARDIAL ISCHEMIA

Abutalipova Onajon Ulugbek kizi

Assistant at the Alfraganus University.

e-mail: abutalipovaonajon7@gmail.com

<https://doi.org/10.5281/zenodo.17577616>

Abstract

Coenzyme Q10 (CoQ10), a lipid-soluble benzoquinone compound, plays a fundamental role in mitochondrial bioenergetics and cellular antioxidant defense. It serves as a vital electron carrier in the mitochondrial respiratory chain, contributing to adenosine triphosphate (ATP) synthesis, while simultaneously acting as a potent antioxidant protecting cells from oxidative stress. This review highlights the biochemical properties, physiological functions, and clinical relevance of CoQ10, with a particular emphasis on its role in myocardial ischemia and ischemia–reperfusion injury.

Experimental and clinical studies demonstrate that CoQ10 supplementation enhances antioxidant enzyme activity, stabilizes mitochondrial function, and reduces lipid peroxidation, thereby mitigating cardiomyocyte damage and decreasing infarct size. Furthermore, CoQ10 has shown beneficial effects in heart failure, hypertension, neurodegenerative disorders, and cancer therapy, largely due to its capacity to restore mitochondrial energy balance and reduce oxidative burden. Despite its safety and tolerability, CoQ10 research faces challenges related to bioavailability, dosage variability, and inconsistent clinical outcomes. Future large-scale, standardized trials are needed to determine optimal dosing strategies, clarify molecular mechanisms, and establish CoQ10's place in evidence-based cardiovascular therapy.

Keywords: Coenzyme Q10; ubiquinone; myocardial ischemia; oxidative stress; mitochondrial dysfunction; antioxidant defense; ischemia–reperfusion injury; cardioprotection; energy metabolism.

Introduction

Coenzyme Q10 (CoQ10), also known as ubiquinone, is a vital lipid-soluble molecule that plays a dual role in the human body—supporting cellular energy production and acting as a powerful antioxidant. Predominantly located within mitochondria, CoQ10 is a key component of the oxidative phosphorylation process, which converts nutrients into adenosine triphosphate (ATP), the primary energy source for cellular activity.

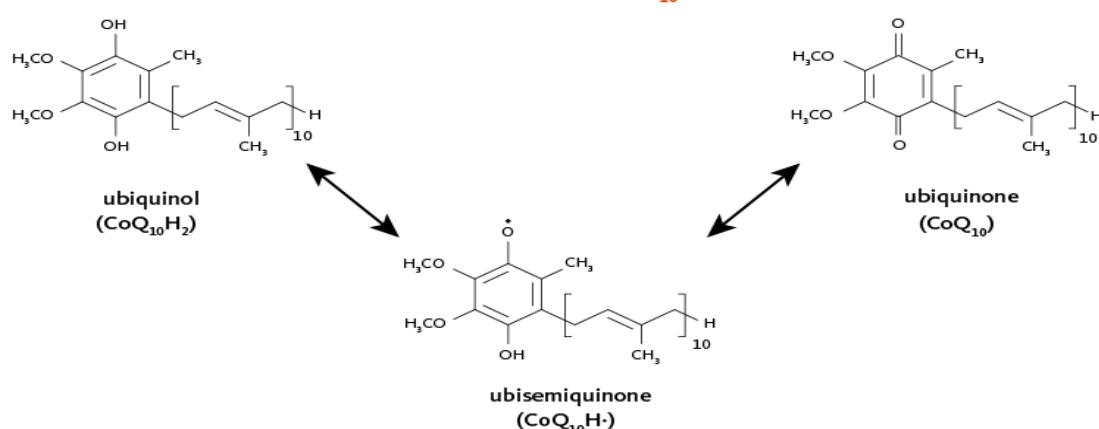
In recent years, CoQ10 has drawn considerable attention in medical research due to its potential therapeutic applications, particularly in myocardial ischemia. It has been shown to alleviate ischemia–reperfusion injury through several mechanisms, including antioxidant protection, reduction of infarct size, and stabilization of mitochondrial membranes and enzymatic functions.

The cardioprotective role of CoQ10 primarily stems from its ability to counteract oxidative stress—a major factor contributing to myocardial ischemia and reperfusion injury. Experimental findings indicate that CoQ10 supplementation enhances the activity of antioxidant enzymes and decreases lipid peroxidation, thereby preserving myocardial cell integrity during ischemic episodes.

Animal and clinical studies suggest that CoQ10 administration can significantly reduce infarct size, correlating with improved cardiac function and recovery outcomes in patients with acute myocardial infarction. Moreover, its ability to modulate mitochondrial bioenergetics highlights CoQ10 as a promising component of therapeutic strategies aimed at supporting myocardial repair after ischemic damage.

Despite these encouraging observations, the clinical application of CoQ10 remains a subject of debate. Although oral supplementation is generally regarded as safe, its bioavailability, pharmacokinetics, and optimal dosage continue to be actively investigated. Limitations such as small study populations, brief intervention periods, and inconsistent dosing protocols in existing research complicate the development of clear clinical guidelines.

Ongoing studies continue to clarify the molecular mechanisms underlying CoQ10's cardioprotective effects. A deeper understanding of these pathways may enable its effective incorporation into standard treatment protocols for myocardial ischemia, potentially improving patient outcomes and enhancing recovery through mitochondrial energy restoration.


Biochemistry of Coenzyme Q10

Structural and Chemical Characteristics

Coenzyme Q10 (CoQ10), also known as *ubiquinone*, is a lipid-soluble quinone compound that plays an indispensable role in cellular bioenergetics and redox regulation. Structurally, CoQ10 consists of a benzoquinone head group attached to a long isoprenoid side chain made up of ten repeating units—hence the designation “Q10.” This hydrophobic tail allows CoQ10 to be embedded within the phospholipid bilayers of cellular and mitochondrial membranes, where it functions as a mobile electron carrier.

The molecule's unique redox potential enables it to shuttle electrons between complexes I and II to complex III of the mitochondrial electron transport chain (ETC), a process essential for oxidative phosphorylation. Through this mechanism, CoQ10 facilitates the conversion of energy derived from carbohydrates and fatty acids into adenosine triphosphate (ATP), the primary energy currency that fuels almost all cellular processes. In energy-demanding organs such as the heart, brain, liver, and kidneys, CoQ10 concentrations are particularly high, reflecting its critical physiological role in sustaining cellular metabolism.

Figure 1. The Different Redox Forms of Coenzyme Q₁₀

Coenzyme Q₁₀ exists in three oxidation states: the fully reduced ubiquinol form (CoQ₁₀H₂), the radical semiquinone intermediate (CoQ₁₀H⁻), and the fully oxidized ubiquinone form (CoQ₁₀).

Antioxidant and Cytoprotective Functions

Beyond its energetic function, CoQ10 serves as a potent endogenous antioxidant that protects cells from oxidative stress—a key factor in the pathogenesis of numerous chronic and degenerative diseases, including myocardial infarction, Parkinson's disease, and diabetes mellitus. It exists in both oxidized (*ubiquinone*) and reduced (*ubiquinol*) forms, which allows it to participate actively in redox cycling.

CoQ10 directly neutralizes reactive oxygen species (ROS) such as superoxide anions and hydroxyl radicals produced during mitochondrial respiration. Additionally, it plays a crucial cooperative role with other antioxidants: when α -tocopherol (vitamin E) neutralizes lipid radicals and becomes oxidized, CoQ10 regenerates it back to its active form, thereby sustaining the antioxidant defense of lipid membranes. This interdependence between CoQ10 and vitamin E helps maintain membrane integrity, prevents lipid peroxidation, and supports cardiovascular and neuronal protection.

Biosynthesis and Nutritional Sources

Coenzyme Q10 is synthesized endogenously through a multistep process involving the mevalonate pathway—the same biochemical route responsible for cholesterol synthesis. The benzoquinone ring originates from the amino acid tyrosine, while the isoprenoid side chain is derived from acetyl-CoA intermediates. Several vitamins and cofactors are necessary for this biosynthetic process, including vitamin B6 (pyridoxine), vitamin B2 (riboflavin), vitamin B3 (niacin), and pantothenic acid (vitamin B5), which acts as a precursor for coenzyme A.

Although humans can synthesize CoQ10 endogenously, dietary sources contribute roughly 20–25 percent of circulating plasma levels. Rich food sources include organ meats (such as liver and heart), oily fish (like sardines and mackerel), whole grains, spinach, and nuts. Currently, no universally accepted dietary reference intake (DRI) exists for CoQ10, but typical dietary intake averages between 3 and 6 mg per day, far below the doses used in therapeutic supplementation.

Age-Related Decline and Pathophysiological Implications

Physiological levels of CoQ10 decline progressively with aging and in certain pathological states. After the age of 30, tissue concentrations may decrease by as much as 25–50 percent in vital organs such as the heart and skeletal muscle. This reduction is thought to result from decreased biosynthetic enzyme activity and increased oxidative degradation. Conditions such as heart failure, neurodegenerative diseases, diabetes, and statin therapy (which inhibits HMG-CoA reductase in the mevalonate pathway) further lower endogenous CoQ10 synthesis.

This decline has significant implications, as reduced CoQ10 availability compromises mitochondrial function, leading to impaired ATP production and increased oxidative stress—factors that exacerbate cellular aging and tissue damage.

Supplementation and Clinical Relevance

Supplementation with CoQ10 has become a major focus of both clinical and experimental research. Oral formulations of ubiquinone or its more bioavailable reduced form, ubiquinol, can effectively increase plasma concentrations and enhance antioxidant capacity. However, the degree to which these supplements raise CoQ10 levels in target tissues such as the myocardium or skeletal muscle remains variable, largely due to differences in absorption and bioavailability.

High-dose CoQ10 therapy is frequently used to treat mitochondrial disorders and conditions characterized by oxidative stress and energy deficits, including congestive heart

failure, ischemic heart disease, and certain neurodegenerative syndromes. In cardiac patients, CoQ10 supplementation has been associated with improved endothelial function, reduced biomarkers of oxidative damage, and better recovery following ischemic injury.

CoQ10 is considered remarkably safe, even at doses exceeding 1,000 mg per day, with minimal adverse effects such as mild gastrointestinal discomfort in some individuals. Importantly, it exhibits a low potential for drug interactions, although clinicians should monitor concurrent use with anticoagulants like warfarin due to its possible mild pro-coagulant effect.

Role of Coenzyme Q10 in Myocardial Ischemia

Coenzyme Q10 (CoQ10) has emerged as a promising cardioprotective compound due to its multifaceted roles in cellular bioenergetics and antioxidant defense. Its therapeutic relevance is particularly evident in the setting of myocardial ischemia and ischemia-reperfusion (I/R) injury, where oxidative stress, mitochondrial dysfunction, and inflammatory cascades collectively contribute to irreversible cardiac damage. Numerous experimental and clinical studies have demonstrated that CoQ10 can attenuate these pathological processes by stabilizing mitochondrial function, reducing oxidative stress, and preserving myocardial energy metabolism.

Mechanisms of Action

Antioxidant and Free Radical-Scavenging Effects

Oxidative stress is one of the principal mechanisms underlying myocardial ischemic injury. When the blood supply to the myocardium is restricted, followed by sudden reperfusion, the abrupt influx of oxygen leads to excessive formation of reactive oxygen species (ROS) such as superoxide anions, hydroxyl radicals, and hydrogen peroxide. These ROS trigger lipid peroxidation, damage mitochondrial membranes, and initiate apoptosis in cardiomyocytes.

Coenzyme Q10, present in both oxidized (ubiquinone) and reduced (ubiquinol) forms, functions as an electron and hydrogen carrier that directly scavenges ROS, neutralizing them before they can inflict cellular damage. Furthermore, CoQ10 helps regenerate other antioxidants, such as vitamin E and vitamin C, amplifying the cell's overall redox defense system.

Experimental models have shown that CoQ10 supplementation significantly increases the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) while reducing malondialdehyde (MDA) levels—a key marker of lipid peroxidation. This antioxidant synergy not only protects cardiomyocyte membranes from oxidative degradation but also mitigates the inflammatory response that typically accompanies reperfusion injury.

By attenuating oxidative stress, CoQ10 also helps maintain the structural integrity of cardiolipin, a phospholipid essential for mitochondrial membrane stability and electron transport chain efficiency. Preservation of cardiolipin prevents mitochondrial permeability transition pore (mPTP) opening—a critical event leading to cell death during reperfusion.

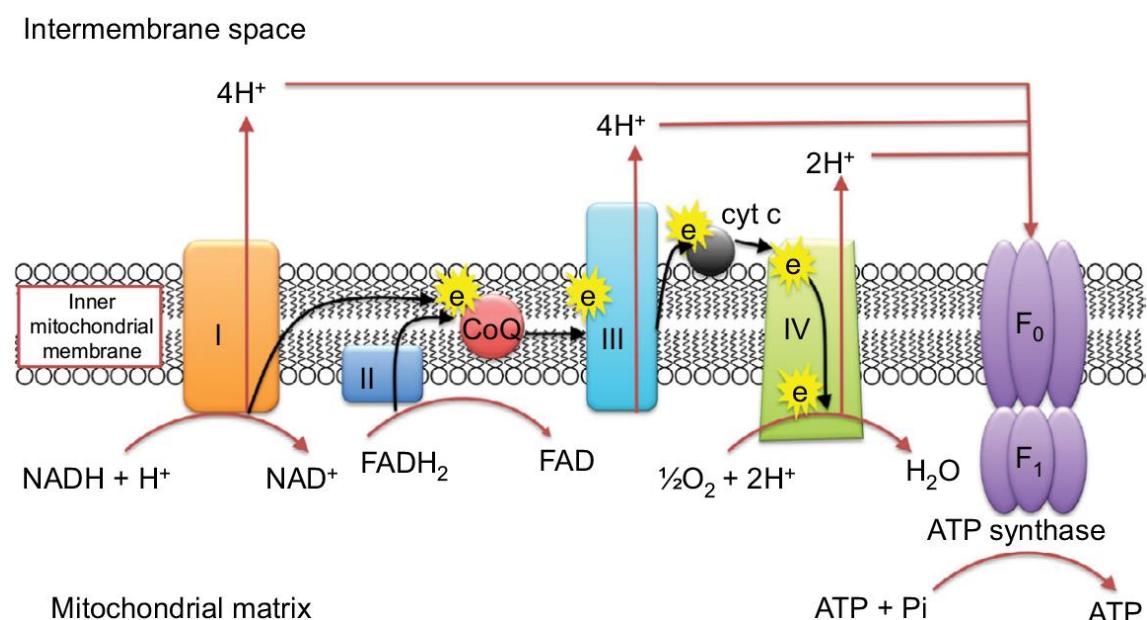
Reduction of Infarct Size and Myocardial Damage

Another key aspect of CoQ10's cardioprotective role is its ability to limit infarct size following ischemic episodes. Animal studies have demonstrated that pre-treatment or co-treatment with CoQ10 can significantly reduce the extent of necrotic myocardial tissue, thereby improving post-infarction cardiac recovery.

This reduction in infarct size has profound clinical implications, as smaller infarcts are directly correlated with improved left ventricular ejection fraction (LVEF) and reduced

incidence of heart failure. CoQ10's effectiveness in this regard is attributed to its prevention of creatine kinase (CK) inactivation and maintenance of adenine nucleotide pools, both of which are crucial for cellular energy preservation during ischemic stress.

Furthermore, CoQ10 has been observed to modulate inflammatory cytokines, reducing the release of tumor necrosis factor-alpha (TNF- α) and interleukin-6 (IL-6), which are commonly elevated during acute myocardial infarction. By dampening this inflammatory cascade, CoQ10 contributes to a more favorable myocardial healing environment, limiting fibrosis and post-infarction remodeling.


Regulation and Stabilization of Mitochondrial Function

Mitochondria are both the primary energy generators and one of the main targets of ischemia-induced injury. During ischemia, impaired oxygen supply causes electrons to accumulate within the electron transport chain (ETC), promoting leakage and ROS formation. CoQ10, as a critical ETC cofactor, ensures efficient electron transfer between complexes I, II, and III, thus minimizing electron leakage and oxidative damage.

Supplementation with CoQ10 enhances mitochondrial respiration efficiency and helps sustain adenosine triphosphate (ATP) synthesis under hypoxic conditions. This is particularly vital for cardiomyocytes, which have high energy demands and limited regenerative capacity.

CoQ10 also exerts a stabilizing effect on mitochondrial membranes, preventing depolarization and subsequent release of pro-apoptotic factors such as cytochrome c. By maintaining mitochondrial integrity, CoQ10 helps preserve cellular viability and promotes post-ischemic recovery.

Emerging evidence also indicates that CoQ10 influences autophagic processes, facilitating the removal of damaged mitochondria and cellular debris during reperfusion. Controlled autophagy plays an adaptive role in restoring normal cardiac metabolism and limiting tissue necrosis after ischemic episodes.

Figure 2 Role of CoQ10 in the mitochondrial electron transport chain.

Therapeutic Applications of Coenzyme Q10

Coenzyme Q10 (CoQ10) has gained considerable attention in recent decades for its therapeutic potential across a wide range of health conditions. Its dual role—as a crucial component of mitochondrial energy production and a powerful antioxidant—makes it especially valuable in disorders characterized by oxidative stress, energy metabolism imbalance, and mitochondrial dysfunction. Clinical and experimental evidence supports the role of CoQ10 as an adjunctive therapy in cardiovascular, neurological, metabolic, and oncological diseases, as well as in general aging-related decline.

Cardiovascular Health

The most extensively studied therapeutic use of CoQ10 is in cardiovascular disease, particularly chronic heart failure, ischemic heart disease, and hypertension. Numerous clinical trials have confirmed that CoQ10 supplementation improves cardiac performance by enhancing myocardial bioenergetics and stabilizing mitochondrial membranes. It supports efficient ATP generation in oxygen-deprived cardiac tissue, thereby improving contractility and reducing fatigue.

Systematic reviews and meta-analyses have demonstrated that CoQ10 supplementation in patients with chronic heart failure leads to improvements in left ventricular ejection fraction, stroke volume, and cardiac output, along with significant reductions in hospitalization rates and mortality. The landmark Q-SYMBIO study, a multicenter randomized controlled trial, found that long-term administration of CoQ10 (100 mg three times daily) significantly improved survival and reduced major adverse cardiac events in heart failure patients.

Beyond heart failure, CoQ10 has shown beneficial effects in hypertension management. Its antioxidant and endothelial-protective properties contribute to vasodilation and improved nitric oxide bioavailability. Controlled trials have revealed that daily doses between 100 and 200 mg can lead to modest but clinically relevant reductions in systolic and diastolic blood pressure, offering a potential non-pharmacological or adjunctive therapy for hypertensive individuals. Furthermore, in ischemic heart disease and post-myocardial infarction recovery, CoQ10 supplementation enhances myocardial oxygen utilization and reduces biomarkers of oxidative injury, contributing to faster rehabilitation and improved quality of life.

Cancer Therapy and Chemoprotection

The role of CoQ10 in oncology is an area of growing interest, primarily due to its antioxidant and anti-inflammatory properties. Cancer patients often experience high oxidative stress levels, exacerbated by chemotherapy and radiotherapy, which can cause secondary organ damage and fatigue. CoQ10 supplementation has been shown to reduce chemotherapy-induced cardiotoxicity, particularly in patients receiving anthracyclines such as doxorubicin.

In breast cancer management, studies have observed that CoQ10 administration may alleviate treatment-related oxidative stress and improve quality of life during Tamoxifen therapy. CoQ10's capacity to modulate inflammatory mediators—such as TNF- α , interleukins, and C-reactive protein—contributes to a more favorable immune response and reduced systemic inflammation. Experimental evidence also suggests that CoQ10 exerts anti-tumorigenic effects through the inhibition of lipid peroxidation, DNA damage reduction, and restoration of mitochondrial membrane potential in hepatic and epithelial cancer models. In animal studies, CoQ10 attenuated trichloroacetic acid-induced hepatocellular carcinoma, suppressing oxidative stress markers and improving liver histology. Although CoQ10 is not a

direct anticancer drug, it holds promise as an adjuvant therapy to reduce oxidative side effects and enhance the efficacy of standard cancer treatments by improving cellular resilience.

Neurodegenerative and Neurometabolic Disorders

Because the brain is highly dependent on mitochondrial energy and is particularly susceptible to oxidative damage, CoQ10 has been investigated for its neuroprotective properties. In neurodegenerative diseases such as Parkinson's disease, Huntington's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS), mitochondrial dysfunction and chronic oxidative stress are key pathogenic factors.

CoQ10 supports neuronal survival by maintaining mitochondrial integrity, reducing ROS accumulation, and preventing apoptosis in dopaminergic and cortical neurons. Clinical studies using high oral doses (up to 1,200–3,000 mg daily) have reported good tolerability, indicating that long-term administration is safe and potentially beneficial for slowing disease progression in early Parkinson's disease. In addition, CoQ10 supplementation has been associated with improved cognitive performance and reduced fatigue in elderly individuals, likely due to enhanced cerebral oxygenation and energy metabolism. Emerging evidence also suggests that CoQ10 may help stabilize mitochondrial dynamics in neuroinflammatory conditions, modulating microglial activation and reducing neuronal loss.

Dosage, Formulation, and Bioavailability

Despite its demonstrated benefits, CoQ10's therapeutic efficacy is partly dependent on bioavailability, which varies based on formulation and individual metabolic differences. CoQ10 is highly lipophilic and poorly soluble in water, which limits its intestinal absorption. Modern pharmaceutical formulations—such as ubiquinol (the reduced form of CoQ10), liposomal suspensions, nanoparticle emulsions, and soft-gel preparations—have greatly enhanced absorption and systemic delivery. Ubiquinol in particular demonstrates 2–4 times higher bioavailability than conventional ubiquinone formulations.

The typical therapeutic dosage for general health maintenance ranges from 30 to 200 mg per day, but higher doses (up to 600–1,200 mg) are often recommended for patients with heart failure, neurodegenerative disorders, or mitochondrial diseases. CoQ10 should ideally be taken with meals containing dietary fat to enhance absorption. The compound is considered extremely safe, even at high doses, with rare and mild side effects such as gastrointestinal discomfort or insomnia. Long-term supplementation has not been associated with significant toxicity or adverse metabolic interactions.

Limitations

Overview of Limitations in Coenzyme Q10 Research

Although Coenzyme Q10 (CoQ10) has demonstrated promising therapeutic potential in restoring mitochondrial energy metabolism and mitigating oxidative damage, particularly after myocardial ischemia, its research base is not without challenges. Several methodological, biological, and translational limitations constrain the strength and generalizability of existing findings. These constraints have led to variability in reported outcomes and have slowed the clinical integration of CoQ10 into standardized therapeutic protocols. Addressing these gaps is critical to fully realizing the cardioprotective and systemic benefits attributed to this compound.

Methodological Limitations

Study Design Constraints

One of the primary challenges in CoQ10 research lies in the limitations of study design. Many clinical and experimental studies investigating its role in myocardial ischemia have been conducted on small sample populations or over short observation periods, which reduces statistical reliability and limits the ability to draw conclusions about long-term efficacy and safety. Furthermore, heterogeneity in patient characteristics—such as age, comorbidities, and medication history—often introduces confounding factors that obscure the specific contribution of CoQ10 to observed improvements.

Another recurring issue is the lack of adequately controlled or double-blind randomized trials. Some early studies employed open-label or non-placebo-controlled designs, making it difficult to distinguish genuine biochemical effects from placebo responses or secondary influences such as concurrent antioxidant supplementation. The absence of long-term follow-up data also restricts our understanding of whether short-term biochemical improvements translate into lasting clinical outcomes, such as reduced mortality or sustained cardiac function recovery.

Biological Limitations

Absorption and Bioavailability Issues

The therapeutic success of CoQ10 is heavily dependent on its bioavailability, which remains one of the most significant biological barriers. CoQ10 is a highly lipophilic molecule with poor aqueous solubility, leading to limited intestinal absorption when administered orally in conventional crystalline forms. Moreover, absorption efficiency varies widely between individuals due to differences in lipid metabolism, gastrointestinal health, and concurrent nutrient intake.

Even when plasma CoQ10 levels increase after supplementation, tissue distribution—particularly to cardiac and skeletal muscle—remains limited. This discrepancy suggests that elevated serum concentrations may not always correlate with sufficient intracellular uptake in target organs, especially under ischemic or hypoxic conditions where transport mechanisms are altered. Advanced formulations such as ubiquinol-based emulsions, liposomal encapsulations, and nanoparticle carriers have improved absorption profiles, yet no consensus has been reached on the most effective delivery method for clinical use.

Further pharmacokinetic studies are required to determine how CoQ10 crosses cellular and mitochondrial membranes, how it interacts with lipid transport proteins, and how these dynamics influence its cardioprotective efficacy.

Limited Understanding of Mechanisms

While CoQ10's function as an electron carrier and antioxidant is well established, the precise molecular mechanisms underlying its protective effects in myocardial ischemia and reperfusion injury remain incompletely understood. The interplay between CoQ10 and other mitochondrial enzymes, redox-sensitive transcription factors, and inflammatory signaling pathways is complex and not yet fully delineated.

For instance, it is unclear whether CoQ10's cardioprotective effects stem predominantly from direct ROS scavenging, modulation of mitochondrial permeability transition pores, or indirect regulation of gene expression related to oxidative metabolism. Additionally, the relationship between CoQ10 supplementation and endogenous biosynthesis regulation remains poorly defined—raising questions about feedback inhibition or compensatory metabolic shifts in long-term users.

These mechanistic uncertainties hinder the establishment of targeted therapeutic models and prevent clinicians from predicting which patient groups may benefit most from supplementation. Multi-omics approaches combining transcriptomics, proteomics, and metabolomics are needed to map CoQ10's systemic interactions and clarify its cellular roles under pathological stress.

Translational and Clinical Limitations

A further limitation lies in the translation of experimental results to clinical practice. While preclinical animal models have consistently demonstrated reductions in infarct size, oxidative markers, and myocardial apoptosis with CoQ10 treatment, human trials often yield more modest or inconsistent results. Differences in species metabolism, controlled environments, and dosing methods can account for this discrepancy.

Additionally, variations in baseline nutritional status and endogenous CoQ10 levels among human participants influence the supplement's effectiveness. For example, patients taking statins or those with mitochondrial disorders may show greater responsiveness to supplementation compared with healthy individuals, complicating the interpretation of pooled trial data.

Economic factors also play a role: high-quality CoQ10 supplements with proven bioavailability remain relatively expensive, limiting accessibility in large-scale clinical applications or in resource-limited settings. This economic barrier, combined with regulatory ambiguity around CoQ10's classification as a dietary supplement rather than a pharmaceutical compound, has delayed its broader therapeutic adoption.

References:

- 1.Crane, F. L. (2001). Biochemical functions of coenzyme Q10. *Journal of the American College of Nutrition*, 20(6), 591–598.
- 2.Littarru, G. P., & Tiano, L. (2007). Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. *Molecular Biotechnology*, 37(1), 31–37.
- 3.Bhagavan, H. N., & Chopra, R. K. (2006). Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. *Free Radical Research*, 40(5), 445–453.
- 4.Mortensen, S. A. et al. (2014). The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure (Q-SYMBIO): A randomized double-blind trial. *Journal of the American College of Cardiology: Heart Failure*, 2(6), 641–649.
- 5.Molyneux, S. L., Young, J. M., Florkowski, C. M., Lever, M., & George, P. M. (2008). Coenzyme Q10: Is there a clinical role and a case for measurement? *Clinical Biochemistry Reviews*, 29(2), 71–82.
- 6.Dobrev, D., & Nattel, S. (2010). Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. *Nature Reviews Cardiology*, 7(10), 573–585.
- 7.Singh, R. B., Niaz, M. A., Rastogi, S. S., & Shukla, P. K. (1998). Effect of coenzyme Q10 on progression of coronary artery disease: A clinical study. *Molecular and Cellular Biochemistry*, 166(1–2), 153–158.
- 8.Lee, B. J., Tseng, Y. F., Yen, C. H., & Lin, P. T. (2013). Effects of coenzyme Q10 supplementation on inflammatory markers in coronary artery disease patients. *Nutrition*, 29(2), 276–280.
- 9.Garrido-Maraver, J., Cordero, M. D., & Navas, P. (2014). Coenzyme Q10 therapy. *Molecular Syndromology*, 5(3–4), 187–197.

10. Manzar, H., & Manzar, N. (2018). Therapeutic implications of CoQ10 in myocardial infarction and heart failure: A comprehensive review. *Current Cardiology Reviews*, 14(4), 283–290.
11. Di Lorenzo, A., et al. (2009). Coenzyme Q10 in cardiovascular and metabolic diseases: Current state of knowledge and future directions. *Nutrients*, 1(3), 168–188.
12. Hernández-Camacho, J. D., Bernier, M., López-Lluch, G., & Navas, P. (2018). Coenzyme Q10 supplementation in aging and disease. *Frontiers in Physiology*, 9, 44.
13. Choi, B. H., & Kim, J. H. (2016). Effects of coenzyme Q10 on oxidative stress and cardiac performance after ischemia–reperfusion. *Life Sciences*, 157, 64–71.
14. Rosenfeldt, F., Hilton, D., Pepe, S., & Krum, H. (2003). Systematic review of effect of coenzyme Q10 in physical exercise, hypertension, and heart failure. *BioFactors*, 18(1–4), 91–100.
15. Mancini, A., et al. (2020). The role of coenzyme Q10 in cardiovascular diseases: A review of clinical trials. *Antioxidants*, 9(4), 341–355.
16. Kumar, A., & Kaur, H. (2016). Coenzyme Q10: A promising approach in the management of neurodegenerative disorders. *Journal of Neurological Sciences*, 367, 30–36.
17. Hernández-Camacho, J. D., et al. (2020). Defining optimal doses of CoQ10 in clinical settings: Pharmacokinetic and safety considerations. *Clinical Pharmacokinetics*, 59(6), 649–663.
18. Kagan, V. E., Quinn, P. J. (2000). Coenzyme Q: Its role in mitochondrial electron transport and antioxidant protection. *Subcellular Biochemistry*, 36, 205–234.

