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Annotation. This article focuses on the application of the upper bound method for 

analyzing the process of extrusion stamping a conical flange. The authors emphasize that 

mathematical models are a key tool for optimizing complex manufacturing operations, such as 

extrusion, which require a deep understanding of material flows, stresses, and forces. 

Аннотация. Данная статья посвящена применению метода верхней оценки для 

анализа процесса штамповки выдавливанием конического бурта. Авторы 

подчеркивают, что математические модели являются ключевым инструментом для 

оптимизации сложных производственных операций, таких как выдавливание, 

требующих глубокого понимания потоков материала, напряжений и сил. 

Keywords: extrusion, upper-bound method, domain subdivision, plastic deformation 

zone, angular strain rates. 

Ключевые слова: выдавливания, метод верхней оценки, разбивка, Очаг 

пластической деформации, угловых скоростей деформации. 

The mathematical model of the extrusion process is a powerful tool for understanding 

and optimizing this complex manufacturing operation. Extrusion involves pushing material 

through a die to create a desired cross-sectional shape. Understanding the material flow, 

stresses, and forces involved in the process is essential for developing efficient operations and 

producing high-quality components. 

One of the effective approaches to analyzing the extrusion process within a 

mathematical framework is the upper-bound method. This method provides an estimate of 

the power or force required for deformation, which is always greater than or equal to the 

actual power or force. Its main advantage lies in the fact that it does not require detailed 

knowledge of the internal stress distribution within the deforming material, making it simpler 

to apply than some other analytical techniques. 

The essence of the upper-bound method is the assumption of a kinematically admissible 

velocity field. This means proposing a scheme of how the material flows during extrusion that 

satisfies the incompressibility condition and the boundary conditions (e.g., material entering 

and exiting the die). Once such a velocity field is defined, the internal power dissipation due to 

plastic deformation and friction at the die–workpiece interface can be calculated. The sum of 

these power dissipations gives an upper estimate of the actual power required for the 
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process. By minimizing this upper-bound estimate of power with respect to various 

parameters of the assumed velocity field, engineers and researchers can obtain a reliable 

estimate of the minimum required power and gain insights into optimal die designs, extrusion 

speeds, and lubrication conditions. This synergy between the mathematical model and the 

upper-bound method enables practical predictions and makes a significant contribution to the 

development of more efficient and cost-effective extrusion processes.In this paper, we 

examine the study of the extrusion process of a flange. 

The main equation of the upper-bound method is given by 

P∂ =
1

v0
( ∑ τк

M

m=1

vкFк + ∑ τs

N

n=1

vcFc) 

Here, P∂ is the deformation force; v0 is the tool’s displacement velocity; M- is the number 

of contact surfaces; τk  is the contact shear stress; Fk is the contact surface area; N-is the 

number of shear surfaces; τs- is the shear yield strength of the deforming material; vc- is the 

relative sliding velocity of adjacent elements; Fc- is the shear surface area of adjacent 

elements. 

This means that solving the problem using the upper-bound method involves the 

following procedure: 

1. The deformable billet is divided into several rigid blocks to achieve the 

required deformation pattern through their relative motion (permissible by the tool 

shape). 

2. Determine M and N. For each pair of adjacent blocks, find the areas of the 

surfaces Fk and Fc. 

3. Construct the velocity hodograph for the chosen subdivision scheme. 

Find vk for each contact surface and vc  for each pair of adjacent blocks. 

4. Assign values to τk  and τs. 

5. Using formula (1), calculate P∂. 

One of the most challenging steps in this procedure is the subdivision of the billet into 

blocks. This task is typically not solved by a single method. When applying the upper-bound 

method, several subdivision variants are considered, and the one that best captures the 

qualitative dependence on the main parameters and yields the absolute minimum value of  P∂  

is selected. 

As an example, consider the upsetting of a strip of unlimited length. 

Let the length of the strip be denoted by lll, and assume τк = μ ∙ 2k. 

Variant 1. Due to symmetry, we have 

P∂1 =
1

v0
4τv2−1F2−1; τs = k; v2−1 =

v0

2h
√b2 + h2;  F2−1 =

1

2
l√b2 + h2    (1) 

Calculation of P∂1 

P∂1 = kl
b2+h2

h
                                                   (2) 

Calculation of  P∂2: 

P∂2 =
1

v0
2[τкv2−6F2−6 + τкv3−0F3−0 + τsv2−1F2−1 + τsv3−2F3−2]; τк = μ ∙ 2k; 

v2−6 = v0 tan α F2−6 =
bl

2
;v3−0 = v0(tan α + tan β); F3−0 = (

b

2
− h tan α)l; 

τs = k; v2−1 =
v0

cos α
; F2−1 =

hl

cos α
;  v3−2 =

v0

cos β
, F3−2 =

hl

cos β
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Therefore,  

P∂2 = 2kbl [μ
b

2h
+

h

b
(

1

cos2α
+

1

cos2β
)]                                    (3) 

Formula (1) shows that P∂1 does not depend on τк (or μ). This is due to the way the billet 

is subdivided into blocks, where blocks 1 and 3 do not move relative to the dies 0 and 6 during 

the upsetting process. 

The second variant of billet subdivision is preferable because, firstly, formula (3) 

expresses the qualitative dependence of P∂ on μ, and secondly, it results in lower values of P∂ 

than the first variant (calculations performed for b/h=4): 

 

μ 0,1 0,3 0,5 

P∂2/P∂1 0,65 0,83 1,01 

  

To obtain the optimal subdivision, Johnson and Kudo recommend first constructing an 

acceptable slip-line field and then replacing parts of it with other straight lines. We will 

demonstrate this using the example of direct extrusion. Let τк1 = τк3 = k, τк2 = τк4 = 0. 

The construction begins at point A. We draw ray AB at a 45° angle to the billet axis, and 

with radius AB we draw an arc BC. The slip-line AD is drawn such that it intersects the billet 

axis at a 45° angle. From point D, the slip-line should pass so that at point E it is tangent to the 

punch surface (since τк1 = k, the η family of lines are tangents, and the ζ  family are normals 

to the punch surface at point E), and at point F it intersects the die’s generatrix at a 45° angle. 

Thus, the slip-line field ABDEFCA is obtained. By straightening the arcs AD, DE, EF, FA, 

and AE, we obtain a subdivision of the billet into rigid triangular blocks that adequately satisfy 

the boundary conditions on the contact surfaces of the tool (see Fig. 1). 

 

 
Fig. 1. Extrusion forging of a conical flange on a rod 

As illustrated by the experience shown in Fig. 2, the extrusion stamping of a conical 

flange on a rod consists of two stages. 

The first stage is the initiation of extrusion and the formation of the conical flange on a 

portion of the billet. This includes determining the specific deforming force at the initial 



IB
M

S
C

R
 |

 V
o

lu
m

e
 2

, I
ss

u
e

 8
, A

u
g

u
st

 

IB
A

S
T

 |
 V

o
lu

m
e

 5
, I

ss
u

e
 0

6
, J

u
n

e
 

 

176 

INTERNATIONAL BULLETIN OF APPLIED SCIENCE 

AND TECHNOLOGY

ECHNOLOGY 

 

IF = 9.2  ISSN: 2750-3402 

IBAST 

moment of stamping (Fig. 2a). The plastic deformation zone is concentrated in the rod 

at the height corresponding to the die cavity. 

The second stage involves the completion of stamping and the final shaping of the flange. 

First stage: Kinematically admissible flow velocities in the plastic deformation zone 

vr
∗ = v0

r

2h
 

vz
∗ = −v0

z

h
 (4) 

Kinematically admissible strain rates 

ξr
∗ = ξv

∗ =
v0

2h
 

ξz
∗ = −

v0

2h
 (5) 

Intensity of strain rates 

ξi
∗ = v0

1

h
 (6) 

The upper bound will be obtained after substituting expressions (4) and (6), followed by 

integration and transformation. 
q

qS
= √3(1 +

2r

2√3h
= √3(

r

√3h
) (7) 

 
Fig. 2. Stamping of a forging of the conical gear type 

1 – Punch; 2 – Split die; 3 – Workpiece (billet); 4 – Ejector. 

A) First stage. Regions I and II of plastic deformation 

B) Second stage. Regions I, II, and III of plastic deformation 

 

The plastic deformation zone can be represented as consisting of two regions (Fig. 2). 

Region I: Kinematically admissible flow velocity fields correspond to the conditions of 

material flow within a conical die. 

vr
∗ = v0

r1
2

r3
cos φ 

vφ
∗ = vθ

∗ = 0         (8) 
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Expression (8) satisfies the boundary condition vr
∗ = cos φ at r=r1. In the case of 

radial flow at r=r1, there is a discontinuity in the shear velocity, given by vφ
∗ = −v0 sin φ. 

Strain rate components and the intensity of angular strain rates (or angular velocity 

gradients 

ξr
∗ = −v0

r1
2

r3
cos φ 

ξv
∗ = ξ0

∗ = v0

r1
2

r3
cos φ 

ηv
∗ = −v0

r1
2

r3
sin φ 

H∗ =
1

√3
v0

r1
2

r3 √12cos2φ + sin2φ          (9) 

In Region II, the velocity and deformation fields are described using cylindrical 

coordinates. 

vr
∗ = v0

r1
2

R3

r

2h
 

vz
∗ = v0

r1
2

R3

z

h
           (10) 

The differential equation 
∂vr

∗

∂r
+

2vr
∗

r
+

vv
∗ tan φ

r
+

vr
∗

r
= 0 is solved using the method of 

variation of an arbitrary constant. 
1

r
(

∂vφ
∗

∂v
+ vφ tan φ) = 0    (11) 

Since in this caser ≠ 0 (where r1≤r≤R), we have 
∂vφ

∗

vφ
∗

= − tan φdφ 

After integration, 

ln vφ
∗ = с cos φ (12) 

Assuming c=c(ϕ) (variation of the constant c), the derivative is 
∂vφ

∗

∂φ
=

∂c

∂φ
cos φ − c sin φ 

Substituting this expression into equation (10), we obtain: 

−v0
r1

2

R3−r1
3 (

R3

r3 + 1) cos φ + 2v0
r1

2

R3−r3 (
R3

r3 − 1) +
1

r
(

∂c

∂φ
cos φ − c sin φ + c cos φ tan φ)=0 

After grouping like terms and simplifying, we get: 

v0

r1
2

R3 − r1
3 (

R2

r2
− 3r) φ + c1 

By substituting c in expression (12) and determining c1 from the condition vφ
∗ = 0 at 

φ = 0, we obtain: 

vφ
∗ = −v0

r1
2

R3−r1
3 (

R3

r2 − 3r) φ cos φ    (13) 

The intensity of angular strain rates is: 

H∗ =
2

3
v0

r1
2 cos φ

R3−r1
3 √

R6

r6 + 3 +
1

4
[φ − (

R3

r2 − 1) tan φ]    (14) 

Region III: 
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In this region, the flow is assumed to be radial. To satisfy the continuity 

condition at φ = γ1 (the boundary between Regions II and III), the boundary conditions are 

relaxed so that the flow rates in Regions II and III are equal. 

Thus, the flow Q through the boundary surface at φ = γ1 for Region II is: 

Q|φ=γ = ∫ vφ
∗ !φ=γ 2πr sin γ1dr = −π

R

r1
v0

r1
2

R3−r3 γ1(sin 2 γ1) [R3 (ln
R

r1
− 1) + r1

3] (3.49) 

Then, 

vφ
∗ | =

Q sin γ1

π(R2−r1
2)

= −
v0r1

2γ1 sin 2γ1 sin γ1

(R3−r1
3)(R2−r1

2)
∙ [R3 (ln

R

r1
− 3) + r1

3] (15) 

Considering the boundary condition (15) for radial flow, vr
∗ =

A

r2 we solve the differential 

equation based on the volume constancy condition (similarly to Region II), and obtain:   

vφ
∗ =

v0r1
2γ1

3 sin 2 γ1 sin γ1

(R3 − r1
3)(R2 − r1

2)(γ2 − γ1
2)

[R3 (3 − ln
R

r1
) − r1

3] [(
γ2

φ
− φ)] 

vr
∗ = vφ

∗ =
v0r1

2γ1
3 sin 2γ1 sin γ1

(R3−r1
3)(R2−r1

2)(γ2−γ1
2)

[R3 (3 − ln
R

r1
) − r1

3] [(
γ2

φ
− φ) tan φ −

γ2

φ2 − 1] (
r1

2

r2 − 1) +

v0
r1

2

r2 cos φ  (16) 

Expressions (16) allow determining the kinematically admissible strain rates and the 

intensity of angular strain rates, and ultimately the upper bound estimate of the deforming 

force. 

The performed calculations are in agreement with the data from experimental studies. 
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