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Annotation. This article focuses on the application of the upper bound method for

analyzing the process of extrusion stamping a conical flange. The authors emphasize that
mathematical models are a key tool for optimizing complex manufacturing operations, such as
extrusion, which require a deep understanding of material flows, stresses, and forces.

AHHOTauMa. /[laHHasA CTaTbsl NOCBslIEHA NPUMEHEHUI0O MeTO/la BepXHel OLleHKU AJis
aHa/iM3a Ipollecca IITAaMIOBKU  BblJAaBJMBaHHMEM KOHHUYECKOro OypTa. ABTODHI
NOoA4YepKUBAIOT, YTO MaTeMaTH4YeCKHe MOJieIM SBJSITCHA KJHYEBbIM UHCTPYMEHTOM JJIs
ONTUMU3ALUMU CJOXKHBIX TPOU3BOJACTBEHHBbIX ONepanuid, TaKUX KaK BblJaBJHMBaHUE,
TpeOyIIUX IJIy60KOro NOHMMaHUs NOTOKOB MaTepurasa, HalpsXKeHUH U CUJL.
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IJIacCTUYeCKOM AedopMaliy, YrJI0BbIX CKOPOCTeH AedopMalu.

The mathematical model of the extrusion process is a powerful tool for understanding
and optimizing this complex manufacturing operation. Extrusion involves pushing material
through a die to create a desired cross-sectional shape. Understanding the material flow,
stresses, and forces involved in the process is essential for developing efficient operations and
producing high-quality components.

One of the effective approaches to analyzing the extrusion process within a
mathematical framework is the upper-bound method. This method provides an estimate of
the power or force required for deformation, which is always greater than or equal to the
actual power or force. Its main advantage lies in the fact that it does not require detailed
knowledge of the internal stress distribution within the deforming material, making it simpler
to apply than some other analytical techniques.

The essence of the upper-bound method is the assumption of a kinematically admissible
velocity field. This means proposing a scheme of how the material flows during extrusion that
satisfies the incompressibility condition and the boundary conditions (e.g., material entering
and exiting the die). Once such a velocity field is defined, the internal power dissipation due to
plastic deformation and friction at the die-workpiece interface can be calculated. The sum of
these power dissipations gives an upper estimate of the actual power required for the
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process. By minimizing this upper-bound estimate of power with respect to various
parameters of the assumed velocity field, engineers and researchers can obtain a reliable
estimate of the minimum required power and gain insights into optimal die designs, extrusion
speeds, and lubrication conditions. This synergy between the mathematical model and the
upper-bound method enables practical predictions and makes a significant contribution to the
development of more efficient and cost-effective extrusion processes.In this paper, we
examine the study of the extrusion process of a flange.
The main equation of the upper-bound method is given by

1 M N
P =— (Z Ty ViFyx + 2 Ts VCFC)
Vo
m=1 n=1

Here, Pa is the deformation force; vo is the tool’s displacement velocity; M- is the number
of contact surfaces; Ttk is the contact shear stress; Fx is the contact surface area; N-is the
number of shear surfaces; ts- is the shear yield strength of the deforming material; vc- is the
relative sliding velocity of adjacent elements; Fc- is the shear surface area of adjacent
elements.

This means that solving the problem using the upper-bound method involves the
following procedure:

1. The deformable billet is divided into several rigid blocks to achieve the
required deformation pattern through their relative motion (permissible by the tool
shape).

2. Determine M and N. For each pair of adjacent blocks, find the areas of the
surfaces Fkx and Fe.

3. Construct the velocity hodograph for the chosen subdivision scheme.
Find vk for each contact surface and vc for each pair of adjacent blocks.

4. Assign values to Tk and Ts.

5. Using formula (1), calculate Po.

One of the most challenging steps in this procedure is the subdivision of the billet into
blocks. This task is typically not solved by a single method. When applying the upper-bound
method, several subdivision variants are considered, and the one that best captures the
qualitative dependence on the main parameters and yields the absolute minimum value of Pa
is selected.

As an example, consider the wupsetting of a strip of unlimited length.
Let the length of the strip be denoted by lll, and assume t, = pu - 2k.

Variant 1. Due to symmetry, we have

Pal = V_104‘TV2_1F2_1,' TS = k; V2_1 = Z_ﬁ Vbz + hz; F2_1 = %IVbZ + h2 (1)
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Calculation of Py,
2 2
P, = 1 Poth

: )

Calculation of Pj,:

N\

Py = V_Z[Tsz—st—s + TV3_oF3-0 + TsVao1Fao1 + Tgv3_oF3 2] T = n- 2k;
0

bl b
Vy_g =Votana F,_¢ = V30 = vo(tana + tan B); F3_o = (E —htana)l;

Vo hl Vo __hl
'F3 2

— _ = —— V _ —_— — _ —_— —
cosa’ 2717 cosa’ 3 Zi cosfB
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Paz = 2kbl [u% + % (co;a + cozzﬁ)] (3)

Formula (1) shows that P;; does not depend on t, (or p). This is due to the way the billet
is subdivided into blocks, where blocks 1 and 3 do not move relative to the dies 0 and 6 during
the upsetting process.

The second variant of billet subdivision is preferable because, firstly, formula (3)
expresses the qualitative dependence of P; on i, and secondly, it results in lower values of P,
than the first variant (calculations performed for b/h=4):

i 0,1 0,3 0,5
P,, /Py 0,65 0,83 1,01

To obtain the optimal subdivision, Johnson and Kudo recommend first constructing an
acceptable slip-line field and then replacing parts of it with other straight lines. We will
demonstrate this using the example of direct extrusion. Let 1,y = T3 = K, Ty = T4y = 0.

The construction begins at point A. We draw ray AB at a 45° angle to the billet axis, and
with radius AB we draw an arc BC. The slip-line AD is drawn such that it intersects the billet
axis at a 45° angle. From point D, the slip-line should pass so that at point E it is tangent to the
punch surface (since t,; = k, the 1 family of lines are tangents, and the { family are normals
to the punch surface at point E), and at point F it intersects the die’s generatrix at a 45° angle.

Thus, the slip-line field ABDEFCA is obtained. By straightening the arcs AD, DE, EF, FA,
and AE, we obtain a subdivision of the billet into rigid triangular blocks that adequately satisfy
the boundary conditions on the contact surfaces of the tool (see Fig. 1).
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Fig. 1. Extrusion forging of a conical flange on a rod

As illustrated by the experience shown in Fig. 2, the extrusion stamping of a conical
flange on a rod consists of two stages.

The first stage is the initiation of extrusion and the formation of the conical flange on a
portion of the billet. This includes determining the specific deforming force at the initial
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moment of stamping (Fig. 2a). The plastic deformation zone is concentrated in the rod

at the height corresponding to the die cavity.
The second stage involves the completion of stamping and the final shaping of the flange.
First stage: Kinematically admissible flow velocities in the plastic deformation zone

L, T
Vi = Voo
% zZ
Vz = —Vo h (4)
Kinematically admissible strain rates
s _ge _ VO
& =& = ﬁ

& =—>2(5)
Intensity of strain rates
" 1
& = Vo h (6)
The upper bound will be obtained after substituting expressions (4) and (6), followed by

integration and transformation.

C= B+ =3 ()

NS IS

4 g%% |
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Fig. 2. Stamping of a forging of the conical gear type
1 - Punch; 2 - Split die; 3 - Workpiece (billet); 4 - Ejector.
A) First stage. Regions I and II of plastic deformation
B) Second stage. Regions |, I1, and III of plastic deformation
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The plastic deformation zone can be represented as consisting of two regions (Fig. 2).
Region I: Kinematically admissible flow velocity fields correspond to the conditions of

material flow within a conical die.

r2
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Vr = Vo30S ¢
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Expression (8) satisfies the boundary condition v; = cos ¢ at r=r1. In the case of

radial flow at r=r1, there is a discontinuity in the shear velocity, given by vy, = —v, sin @.
Strain rate components and the intensity of angular strain rates (or angular velocity
gradients
& = —Vo i cos @
r3

2
H* = %VO:—;\/:lZCOSZq) + sin?¢ 9)

In Region II, the velocity and deformation fields are described using cylindrical
coordinates.
r2 r
R32h

vy =V
r? z

vz = Vot (10)

. . . vy I v r . .
The differential equation %+2—‘r’r+”$+%= 0 is solved using the method of

variation of an arbitrary constant.
1 [0V
;(—‘p + v, tan (p) =0 (11)

ov
Since in this caser # 0 (where risr<R), we have
vy
— = —tan@dg
®

After integration,

Invg = c cos @ (12)

Assuming c=c(¢) (variation of the constant c), the derivative is
% = Ecoscp —csing
de Jop

Substituting this expression into equation (10), we obtain:

r3 (R3 r3 (R3 1 ,dc . _
—Vofri(r—3+ 1) coscp+2v0m(r—3— 1) +;(%coscp—csm(p+ccos<ptan(p)—0

After grouping like terms and simplifying, we get:
r?  (R?
1
VORS——I"E<1"_2_ 31‘)([) +c;
By substituting c in expression (12) and determining c; from the condition v, = 0 at
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@ = 0, we obtain:
2

* R3
Vo = =V 1 (r—z— 3r) @pcos@ (13)

3_p3
R®-rj

The intensity of angular strain rates is:

* 2 2 RS 1 R°

=3zVo 3
3 R3-r3

N\
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In this region, the flow is assumed to be radial. To satisfy the continuity
condition at ¢ = y; (the boundary between Regions II and III), the boundary conditions are
relaxed so that the flow rates in Regions Il and III are equal.

Thus, the flow Q through the boundary surface at ¢ = y, for Region Il is:

— R * | . d _ I‘% : 3 1 R 3
Qlp=y = frl Vo!e=y 2Trsiny,dr = —mv, ﬁyl(ngyl) [R ( n-- 1) + rl] (3.49)
Then,

«| _ Qsiny; _ vorfygsin2yssiny; [p3 R 3
Vol = T(R2-1%) (R3-13)(R2-12) [R (ln rp 3) + rl] (15)

Considering the boundary condition (15) for radial flow, vi = %we solve the differential

equation based on the volume constancy condition (similarly to Region II), and obtain:

2.3 o . 2
VoI'iY; sin 2y, siny; [ 5 ( R) 3] I Y l
Vo = R°(3—In—)—=ri||(——¢
¢ T R - -~V )G
r}

v = v = o [} (3 - ing) =[5 - o) e - 1] (- 1)+

2
Vo :—;cos ¢ (16)

*

Expressions (16) allow determining the kinematically admissible strain rates and the
intensity of angular strain rates, and ultimately the upper bound estimate of the deforming
force.

The performed calculations are in agreement with the data from experimental studies.
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