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Annotation: The article first proves a limit theorem for a sequence of random variables 

called “U-statistics,” introduced by V. Hefdling. The proven limit theorem generalizes the 

result of V. Hefdling's theorem to the case where the number of samples is a random variable. 

In the theorem, it is not required that the observation results of the sample size Nn are 

independent of the ξi where (i = 1,2, …,); however, as n → ∞  there must exist a sequence of 

numbers - kn with (kn → ∞) and a positive random variable N0 such that,   
Nn

kn

p
→ N0   is 

required. 

Keywords: Generalized statistics, sample size, normal distribution, independence, 

random variable, U-statistics, sequence of positive integer-valued random variables, 

distribution function, symmetry with respect to arguments. 

Let us assume that {𝜉𝑖} – is a sequence of independent identically distributed random 

variables (r.v.). We form a statistic of the form: 

    𝑈𝑛 = (𝐶𝑛
𝑘)−1 ∑ 𝑓(𝜉𝑖1 ,1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛 … , 𝜉𝑖𝑘) = (𝐶𝑛

𝑘)−1 ∑ 𝑓((𝑛,𝑘) 𝜉𝑖1 , … , 𝜉𝑖𝑘), which is 

commonly referred to as U-statistics. Here, 𝑓(𝜉𝑖1 , … , 𝜉𝑖𝑘) − is some function symmetric with 

respect to its arguments. We denote: 

     𝜃 = 𝑀𝑓(𝜉1, … , 𝜉𝑘),            𝑓𝑚(𝑥1, … , 𝑥𝑚) = 𝑀𝑓(𝑥1, … , 𝑥𝑚, 𝜉𝑚+1, … , 𝜉𝑘)   

    (𝑚 ≤ 𝑘),      𝑙2 = 𝐷𝑓1(𝜉1).  

U-statistics were first introduced by W. Hoeffding [1], and under the condition       

( H ):               𝑀𝑓2(𝜉1, … , 𝜉𝑘) < ∞,      𝑙2 ≠ 0  

 proved that the sequence of random variables 

𝑍𝑛 =
√𝑛

𝑘√ 𝑙2
(𝑈𝑛 − 𝜃) -  is asymptotically normal with parameters (0,1).  

Subsequently, various properties of U-statistics were intensively studied with a 

deterministic sample size. The limiting behavior of U-statistics with a random sample size was 

examined in works [2], [3], and others.  

Assuming {𝑁𝑛} – be a sequence of positive integer-valued random variables defined on 

the probability space  {𝛺, ℱ, 𝑃} , where the sequence of random variables {𝜉𝑛} is also defined.  

In work [2] it was proven that if as 𝑛 → ∞  the sequence of random variables. {
𝑁𝑛

𝑛
}  

converges to one in probability, then 

                            𝑃(𝑍𝑁𝑛
< 𝑥) → 𝛷(𝑥) = ∫ 𝑒−𝑢2 2⁄ 𝑑𝑢

𝑥

−∞
            (1) 
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This work also obtained the rate of convergence in the limiting relation (1). In 

work [3], relation (1) was proven under the condition 

                                   
𝑁𝑛

𝑛

𝑝
→ 𝑁0            (𝑛 → ∞), 

where 𝑁0 > 0 – is a discrete random variable. 

The present work is dedicated to proving a theorem about the asymptotic behavior of U-

statistics with a random sample size. The proven theorem generalizes the result of work [3] to 

the case when 𝑁0 – is an arbitrary positive random variable. 

Theorem: Let the conditions (Н)  and (А0) be satisfied:  

There exists a sequence of numbers such that {𝑘𝑛} , 𝑘𝑛 → ∞ as 𝑛 → ∞   

and a positive random variable 𝑁0  such that     
𝑁𝑛

𝑘𝑛

𝑝
→ 𝑁0  as 𝑛 → ∞ . then for any     𝐴 ∈  ℱ,

𝑃(𝐴) > 0  

                          𝑃(𝑍𝑁𝑛
< 𝑥/𝐴) → 𝛷(𝑥)  as  𝑛 → ∞. 

Note that for 𝑘 = 1 и  𝐴 = Ω  the theorem coincides with the theorems of Y. Modyorody 

[5] and Y. Blum, D. Hanson, Y. Rosenblatt [6]. 

First, we will prove the following lemma. 

Lemma. If 𝑀𝑓2(𝜉1, … , 𝜉𝑘) < ∞, then for any ℎ (ℎ = 1,2, … , 𝑘) 

                                  𝛿ℎ = 𝐷𝑔(ℎ)(𝜉1, … , 𝜉ℎ) < ∞ ,  

where              𝑔(1)(𝑥1) = 𝑓1(𝑥1) − 𝜃,    

𝑔(ℎ)(𝑥1, … , 𝑥ℎ) = 𝑓ℎ(𝑥1, … , 𝑥ℎ) − 𝜃 − ∑ ∑ 𝑔(𝑗)(𝑥1, … , 𝑥𝑗)(ℎ,𝑗)
ℎ−1
𝑗=1 , (ℎ = 2, … , 𝑘). 

Proof of the lemma. By the theorem proven in work  [1] for each  𝑖 = 1, 𝑘 ⃐                   it holds 

that                  

                                 𝑀(𝑓𝑖(𝜉1, … , 𝜉𝑘) − 𝜃)2 = 𝜁𝑖 < ∞                          (2) 

Considering the symmetry of the function 𝑓(𝜉1, … , 𝜉𝑘)  it was proven in [1] that 

                  𝑀(𝑓𝑖(𝜉𝛼1
, … , 𝜉𝛼𝑖

) − 𝜃) (𝑓𝑗 (𝜉𝛽1
, … , 𝜉𝛽𝑗

) − 𝜃) = 𝜁𝑙  ,           (3) 

where 𝑙 - is the number of common indices among (𝛼1, … , 𝛼𝑖) and  (𝛽1, … , 𝛽𝑗). Since 

𝑀𝑔(ℎ)(𝜉1, … , 𝜉ℎ) = 0 , it follows from (3) that  𝛿ℎ can be expressed as a linear 

combination of the quantities  𝜁1, … , 𝜁ℎ . Hence, from (2) we obtain that 𝛿ℎ < ∞. 

Next, for convenience, we will state one theorem from [1] and some known lemmas. 

Theorem [𝟏].   Let’s assume that 𝑀𝑓2(𝜉1, … , 𝜉𝑘) < ∞.   then 

1) the following decomposition holds: 

                         𝑈𝑛 =  𝜃 + ∑ 𝐶𝑘
ℎ𝑉𝑛

(ℎ)
= 𝜃 + 𝑘𝑉𝑛

(1)
+ 𝑅𝑛,

𝑘
ℎ=1   

where        𝑉𝑛
(ℎ)

= (𝐶𝑛
ℎ)−1 ∑ 𝑔(ℎ)(𝜉1, … , 𝜉ℎ),(𝑛,ℎ)  𝑅𝑛 = ∑ 𝐶𝑘

ℎ𝑉𝑛
(ℎ)𝑘

ℎ=2 ;  

2) for each ℎ = 1, 𝑘 ⃐      the sequence of random variables 

𝑆𝑛
(ℎ)

= 𝐶𝑛
ℎ𝑉𝑛

(ℎ)
 is a martingale. 

Lemma 1 ( [𝟓]). Let {𝜇𝑛} - be a sequence of r.v. and 𝜇0 - be some r.v. such that 

                                    𝜇𝑛

𝑝
→ 𝜇0                     as          𝑛 → ∞. 

Let 𝑎, 𝑏 (𝑎 < 𝑏) be points of continuity of the c.d.f. 𝑃(𝜇0 < 𝑥). Let’s assume that 

           𝐴𝑛 = (𝑎 ≤ 𝜇𝑛 < 𝑏),            𝐴0 = (𝑎 ≤ 𝜇0 < 𝑏). 

then as  𝑛 → ∞ 

                                     𝑃(�̅�𝑛𝐴0 + 𝐴𝑛�̅�0) → 0.  
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Lemma 2 ([𝟔]). Let {𝜇𝑛} - be a sequence of non-degenerate r.v. and 𝐴𝑛– be some 

event depending on the r.v.    𝜇𝑘𝑛
,  𝜇𝑘𝑛+1, … , 𝜇𝑚𝑛

,        ( 𝑚𝑛 ≥ 𝑘𝑛). 

Assume that       𝑘𝑛 → ∞ ,    as      𝑛 → ∞ .  

Then for any     𝐴 ∈  ℱ, 𝑃(𝐴) > 0  

                       𝑃(𝐴𝑛𝐴) − 𝑃(𝐴𝑛)𝑃(𝐴) → 0        as      𝑛 → ∞ . 

Lemma 3 ([𝟕]). Let {𝜇𝑛} - be a sequence of r.v. and 𝜇0 - be some positive r.v. such that as      

𝑛 → ∞ 

                               𝑃(𝜇𝑛 < 𝑥) → 𝑃(𝜇0 < 𝑥)  

at every point xxx that is a point of continuity of the c.d.f.  𝑃(𝜇0 < 𝑥). Then for any 𝜀 > 0 

there exist points 0 < 𝑎 < 𝑏 < ∞  and  𝑛(𝜀)  such that for all 𝑛 > 𝑛(𝜀) 

                                    𝑃(𝑎 ≤ 𝜇𝑛 < 𝑏) > 1 − 𝜀. 

Proof of the theorem: Without loss of generality, assume that 𝑘𝑛 = 𝑛. For any 𝜀 > 0 we 

choose numbers  

                  0 < 𝑎 = 𝑏1 < 𝑏2 < ⋯ < 𝑏𝑚−1 < 𝑏𝑚 = 𝑏 < ∞  

from the set of continuity points of the c.d.f. 𝑃(𝑁0 < 𝑥) , such that 

                               𝑃(𝑎 ≤ 𝑁0 < 𝑏) ≥ 1 −
𝜀

3
  

and 

               max
1≤𝑖≤𝑚

|𝑏𝑖 − 𝑏𝑖−1| = 𝜀𝑚 → 0  as   𝑚 → ∞. 

Let us denote 

               𝐴0 = (𝑎 ≤ 𝑁0 < 𝑏),               𝐴0
(𝑗)

= (𝑏𝑗−1 ≤ 𝑁0 < 𝑏𝑗),    

            𝐴𝑛 = (𝑎𝑛 ≤ 𝑁 < 𝑏𝑛),               𝐴𝑛
(𝑗)

= (𝑛𝑏𝑗−1 ≤ 𝑁 < 𝑛𝑏𝑗),  

 

where 𝑁 = 𝑁𝑛, 𝑛𝑗 = [𝑛𝑏𝑗],  [𝑥] – is the integer part of  𝑥. After some straightforward 

transformations, we obtain 

       𝑍𝑁 = 𝑍𝑛𝑗−1
+ √𝑁 (𝑈𝑁 − 𝑈𝑛𝑗−1

)
1

𝑘√𝑙2
+ 𝑍𝑛𝑗−1

(√
𝑁

𝑛𝑗−1
− 1) =  

       =  𝑍𝑛𝑗−1
+ 𝜂𝑁𝑗 + 𝛾𝑁𝑗.                                                                           (4) 

Let us assume that 

       𝐵𝑛1 = ( max
𝑛𝑗−1≤𝛼≤𝑛𝑗

|𝜂𝛼𝑗| ≤ 𝜀),      𝐵𝑛2 = ( max
𝑛𝑗−1≤𝛼≤𝑛𝑗

|𝛾𝛼𝑗| ≤ 𝜀). 

Then from equation (4) and the definitions used, it is easy to verify the following: 

                              𝑇𝑛
− ≤ 𝑃𝐴(𝑍𝑁 < 𝑥) ≤ 𝑇𝑛

+ + 𝑃𝐴(�̅�𝑛),                             (5) 

where 

𝑇𝑛
± = ∑ 𝑃𝐴(𝑍𝑛𝑗−1

< 𝑥 ± 2𝜀, 𝐴𝑛
(𝑗)

) ± ∑ 𝑃𝐴(�̅�𝑛1, 𝐴𝑛
(𝑗)

) ±𝑚
𝑗=1

𝑚
𝑗=1 ∑ 𝑃𝐴(�̅�𝑛2, 𝐴𝑛

(𝑗)
)𝑚

𝑗=1 = 

= Σ± ± Σ1 ± Σ2,  and     𝑃𝐴(∙) = 𝑃(∙ 𝐴⁄ ).    

By Lemma 1, there exists a number 𝑛0(𝜀) such that for 𝑛 > 𝑛0(𝜀)  

                     |Σ± − ∑ 𝑃𝐴(𝑍𝑛𝑗−1
< 𝑥 ± 2𝜀, 𝐴0

(𝑗)
)𝑚

𝑗=1 | ≤ 𝜀                            (6) 

The sequence of r.v. {𝑍𝑛}  possesses the property of 𝑅– mixing with a limiting 

distribution Ф(𝑥) [3]. Subsequently, there exists a number 𝑛1(𝜀) such that for 𝑛 > 𝑛1(𝜀) 

                |∑ 𝑃𝐴(𝑍𝑛𝑗−1
< 𝑥 ± 2𝜀, 𝐴0

(𝑗)
)𝑚

𝑗=1 − Ф(𝑥 ± 2𝜀)𝑃𝐴(𝐴0)| ≤ 𝜀.        (7) 

Since, due to Lemma 3 (�̅�𝑛) ≤ 𝜀 ,  then from (5) – (7)  for sufficiently large 𝑛  we have 

the following inequality: 
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                   Ф(𝑥 − 2𝜀) − Σ1 − Σ2 −
𝜀

𝑃(𝐴)
− 2𝜀 ≤ 𝑃𝐴(𝑍𝑁 < 𝑥) ≤  

                     ≤  Ф(𝑥 + 2𝜀) + Σ1 + Σ2 +
𝜀

𝑃(𝐴)
+ 2𝜀                                    (8) 

 Clearly, for   𝑛𝑗−1 ≤ 𝑁 ≤ 𝑛𝑗  

                                  0 < √
𝑁

𝑛𝑗−1
− 1 ≤ 𝜀𝑚.  

Now, returning to the reasoning used in (6) and (7), we assert that for a given 𝜀 > 0 

there exist numbers 𝑛(𝜀)  and  𝑚(𝜀)  such that for 𝑛 > 𝑛(𝜀)  ,  𝑚 > 𝑚(𝜀) 

                                      Σ2 ≤ 𝜀                                                      (9) 

To estimate Σ1 from above, we use Theorem [1], resulting in:  

Σ1 ≤ ∑ 𝑃𝐴 ( max
𝑛𝑗−1≤𝛼≤𝑛𝑗

√𝛼 |𝑉𝛼
(1)

− 𝑉𝑛𝑗−1

(1)
| >

𝜀𝑘√𝑙2

2
, 𝐴𝑛

(𝑗)
) +𝑚

𝑗=1   

 + ∑ 𝑃𝐴 ( max
𝑛𝑗−1≤𝛼≤𝑛𝑗

√𝛼|𝑅𝛼| >
𝜀𝑘√𝑙2

2
, 𝐴𝑛

(𝑗)
) = Σ11 + Σ12.𝑚

𝑗=1             (10) 

It is clearly visible that 

Σ11 ≤ ∑ 𝑃𝐴 ( max
𝑛𝑗−1≤𝛼≤𝑛𝑗

1

√𝛼
|∑ (𝑓1(𝜉𝑖) − 𝜃)𝛼

𝑖=𝑛𝑗−1
| ≥

𝜀𝑘√𝑙2

4
, 𝐴𝑛

(𝑗)
) +𝑚

𝑗=1   

+ ∑ 𝑃𝐴(
𝑛𝑗−𝑛𝑗−1

𝑛𝑗−1
∙

1

√𝑛𝑗−1

𝑚
𝑗=1 |∑ (𝑓1(𝜉𝑖) − 𝜃)

𝑛𝑗−1

𝑖=1
| ≥

𝜀𝑘√𝑙2

4
, 𝐴𝑛

(𝑗)
) = 

= Σ11
(1)

+ Σ11
(2)

                                                                                         (11)  

By Lemma 1 in the expressions  Σ11
(1)

+ Σ11
(2)

 the event 𝐴𝑛
(𝑗)

 can be replaced with the event 

𝐴0
(𝑗)

, that is to say, for any 𝜀 > 0 there exists a number 𝑛2(𝜀) such that when 𝑛 > 𝑛2(𝜀)   

|Σ11
(1)

− ∑ 𝑃𝐴 ( max
𝑛𝑗−1≤𝛼≤𝑛𝑗

1

√𝛼
|∑ (𝑓1(𝜉𝑖) − 𝜃)𝛼

𝑖=𝑛𝑗−1
| ≥

𝜀𝑘√𝑙2

4
, 𝐴0

(𝑗)
)𝑚

𝑗=1 | ≤ 𝜀,   (12) 

|Σ11
(2)

− ∑ 𝑃𝐴(
𝑛𝑗−𝑛𝑗−1

𝑛𝑗−1
∙

1

√𝑛𝑗−1

𝑚
𝑗=1 |∑ (𝑓1(𝜉𝑖) − 𝜃)

𝑛𝑗−1

𝑖=1
| ≥

𝜀𝑘√𝑙2

4
, 𝐴0

(𝑗)
)| ≤ 𝜀.    (13) 

Using initially Lemma 2 and then Kolmogorov's inequality, we find numbers 𝑛3(𝜀)  and  

𝑚3(𝜀) such that for 𝑛 > 𝑛3(𝜀)  , 𝑚 > 𝑚3(𝜀)  

         ∑ 𝑃𝐴 ( max
𝑛𝑗−1≤𝛼≤𝑛𝑗

1

√𝛼
|∑ (𝑓1(𝜉𝑖) − 𝜃)𝛼

𝑖=𝑛𝑗−1
| ≥

𝜀𝑘√𝑙2

4
, 𝐴0

(𝑗)
)𝑚

𝑗=1 ≤ 𝜀         (14) 

Since the expression 
1

√𝑛𝑗−1
∑ (𝑓1(𝜉𝑖) − 𝜃)

𝑛𝑗−1

𝑖=1
  has the property of 𝑅– mixing with a 

limiting distribution  (x).  we assert that there exist numbers 𝑛4(𝜀)  and  𝑚4(𝜀) such that for 

𝑛 > 𝑛4(𝜀)  , 𝑚 > 𝑚4(𝜀)  

       ∑ 𝑃𝐴(
𝑛𝑗−𝑛𝑗−1

𝑛𝑗−1
∙

1

√𝑛𝑗−1

𝑚
𝑗=1 |∑ (𝑓1(𝜉𝑖) − 𝜃)

𝑛𝑗−1

𝑖=1
| ≥

𝜀𝑘√𝑙2

4
, 𝐴0

(𝑗)
) ≤ 𝜀            (15) 

From (11)-(15) for sufficiently large n and m, we obtain 

                                       Σ11 ≤ 𝑐𝜀                                                                 (16) 

(Here and further, c is a constant that does not depend on 𝑛 , 𝑚 и 𝜀). 

         It is not difficult to obtain the following inequality: 

            Σ12 ≤ ∑ 𝑃𝐴( max
𝑛𝑎≤𝛼≤𝑛𝑏

|𝑆𝛼
(ℎ)

| ≥
𝜀𝑘√𝑙2𝐶[𝑛𝑎]

ℎ

4(𝑘−1)√𝑛𝑏𝐶𝑘
ℎ)𝑘

ℎ=2   

 Since 𝐷𝑆𝑛
ℎ = 𝐶𝑛

ℎ𝛿ℎ  and due to Theorem [1] 𝑆𝑛
ℎ is a martingale, applying Kolmogorov's 

inequality for martingales gives us: 

                       Σ12 ≤ ∑
16(𝑘−1)2(𝐶𝑘

ℎ)2𝑛𝑏𝐶[𝑛𝑏]
ℎ 𝛿ℎ

𝜀2𝑘2𝑙2[𝐶[𝑛𝑎]
ℎ ]

2
𝑘
ℎ=2 =

𝑐𝛿ℎ

𝜀2𝑛
,  
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whence for   𝑛 >
𝑐𝛿ℎ

𝜀3
   we have   

                                            Σ12 ≤ 𝜀  .                                                            (17) 

From (10), (16) and (17) it follows that for sufficiently large 𝑛  and  𝑚  

                                            Σ1 ≤ 𝑐𝜀  .                                                            (18)   

Due to the arbitrariness of 𝜀 > 0 from (8), (9) and  (18)  we conclude the proof of the 

theorem. 

Following the work of [8], theorems are stated in which the existence of a limiting distribution 

for a deterministic sequence is assumed, and under corresponding additional conditions, the 

existence of a limiting distribution for sequences with a random index is asserted. We will call 

these transfer theorems. Works [9] and [10] are devoted to the study of transfer theorems for 

sequences of terms in the variational series in cases where independence between the 

random index and the original sequence of random variables is not assumed (the so-called 

"dependent scheme"). The theorem we proved is a transfer theorem for U-statistics in the 

case of a "dependent scheme." 
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