



## THEORETICAL DESCRIPTION OF THERMAL PROCESSES IN THE ENGINE COOLING SYSTEM OF THE TZST CE-220 COTTON PICKER

Tojiboyev Sherali Imomali o'g'li

Axunov Javlon Abdujalilovich

Fergana Polytechnic Institute, Fergana, Uzbekistan

<https://doi.org/10.5281/zenodo.10035972>

**Abstract:** In this article, how thermal processes occur in the cooling system of tractor engines and how to make a separate system for each of the processes, a separate solution has been found for thermal processes in all parts of the engine in the overall system. In addition, the temperature change in the cooling system at different ambient temperatures was calculated.

**Key words:** thermodynamics, specific enthalpy, heat balance, heat transfer surfaces.

### Introduction

When theoretically studying a hydraulic drive operating at different ambient temperatures, it is important to study the thermodynamic processes occurring in it [3].

An analysis of the condition of cooling systems and their elements during operation in the conditions of the Central Asian region shows that machines moving in conditions of high temperature and dusty air have a very low service life, reliability and reduced performance [1]. It has been established that in conditions of high temperature and dusty air, the service life of mobile machines is reduced by 2 times, energy efficiency deteriorates by 22-25%.

It has been established that the law of change in liquid temperature does not significantly affect the nature of unsteady processes in liquid channels [4] and they can be characterized by a small error in the average specified liquid temperature along the channel.

Since temperature is one of the most profound concepts of thermodynamics, the thermal process occurring in a cooling system can be described by the equation.

$$m * di = dq_B + dq_{atrof-muhit} - dq_{rad} \quad (1)$$

Here is  $di$  - the change in enthalpy of the system,  $i$  - specific enthalpy,  $m$  - mass of the system,  $dq_B$  - internal heat transfer in the system,  $dq_{muhit}$  - heat transferred during heat exchange between the system and the environment,  $dq_{rad}$  - heat absorption in the water radiator.

Let us write down each term of equation (1), when calculating

$$\left\{ \begin{array}{l} C_p = \text{const} \Rightarrow di = C_p dT \\ m * di = m_s * c_s * dT_s + m_a * c_a * dT_a \\ dq_B = Q_B * dt \\ dq_{atrof-muhit} = k * F * (T_{atrof-muhit} - T_s) * dt \\ dq_{rad} = Q_{rad} * dt \end{array} \right. \quad (2)$$

Here are  $m_s, m_a$  - the liquid and aggregate masses;  $c_s, c_a$  - specific heat capacity of liquids and aggregates;  $dT_s, dT_a$  - current values of temperature rise of liquids and units;

$T_s, T_{atrof-muhit}$  — current values of liquid and ambient temperature;  $F$  - surface area of the external heat transfer system;  $k$  - average heat transfer coefficient to the environment;  $Q_B$  — current value of thermal power in the system;  $Q_{rad}$  — current value of the heat capacity of the liquid radiator.

Taking into account (2), equation (1) can be written as follows:

$$m * c \frac{dT_i}{dt} = Q_B + kF(T_{atrof-muhit} - T_i) - Q_{rad} \quad (3)$$

Here is  $m, c$  — the mass and specific heat capacity of the cooling system.

Let us assume that the cooling system under consideration consists of "n" sections having different current average temperatures  $T_1, T_2, \dots, T_n$  (Scheme 1). Let's imagine that the average heating level at any section of the flow in a section does not differ from the average mass temperature of the sections, and heat exchange between sections is carried out only due to forced convection of the liquid.

Taking into account these assumptions, equation (3) takes the following form:

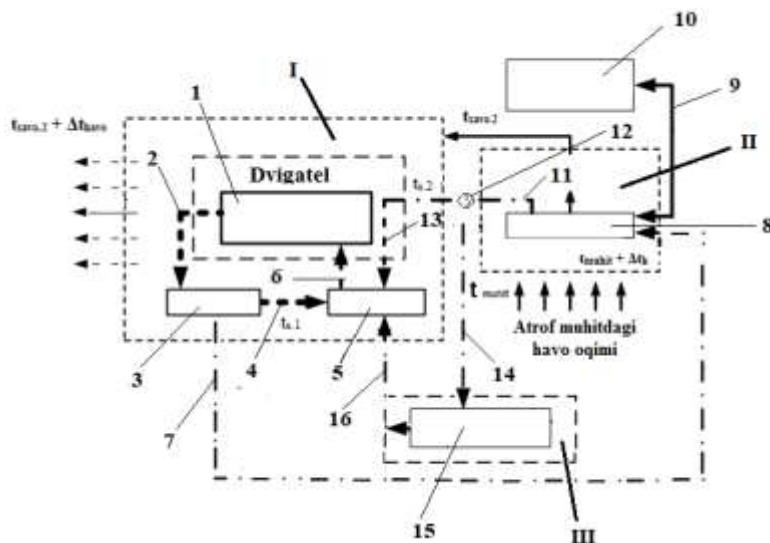
$$m_i * c_i \frac{dT_i}{dt} = Q_{Bi} + k_i F_i (T_{atrof-muhit} - T_i) - \sum_j (\theta_{ji} T_j - \theta_{ij} T_i) - Q_{rad} \quad i, j = 1, n \quad (4)$$

$\theta_{ji}, \theta_{ij}$  — average specific (temperature-dependent) heat fluxes per cycle transferred by a liquid from the  $i$  - part to the  $j$  - part and vice versa during forced convection.



Scheme 1. Diagram of internal heat transfer in the cooling system.

$\theta_{ij}$  the cost can be determined as follows


$$\theta_{ij} = Q_{suy} i \rho_{suy} c_{suy} \quad (5)$$

Here is  $\rho_{suy}$  — the density of the working fluid;  $Q_{suy} i$  —  $i$  is the average fluid flow across the section.

Thus, equation (4) allows us to obtain a reliable picture of thermal processes in the cooling system of automobiles.

Temperature change in the cooling system at different ambient temperatures.

Let's consider the cooling system shown in Diagram 2.



Scheme 2. Thermal balance diagram of the cooling system

Conventionally, the cooling system can be divided into three sections, section 1 consists of a cooling jacket 1, internal pipes 2,4,6, thermostat 3 and water pump 5. Section 2 consists of hoses 7,9,11,13, radiator 8, expansion tank 10 and heat exchanger 12. The third section consists of hoses 14, 16 and cabin radiator 15.

$$\left\{ \begin{array}{l} i_1 \frac{dT_1}{dt} + (kF_1 + \theta_2)T_1 + \theta_2 T_2 + \theta_3 T_3 = Q_{B1} \\ i_2 \frac{dT_2}{dt} + \theta_2 T_1 + (kF_2 + \theta_2)T_2 + \theta_3 T_2 = 0 \\ i_3 \frac{dT_3}{dt} + (kF_3 + \theta_3)T_3 + \theta_3 T_2 = 0 \end{array} \right. \quad (6)$$

The areas of the outer heat transfer surfaces of sections  $F_I$ ,  $F_{II}$ ,  $F_{III}$ -1, 2 and 3 are determined by the following expressions

$$F_I = F_1 + F_2 + F_3 + F_4 + F_5 + F_6$$

$$F_{II} = F_7 + F_8 + F_9 + F_{10} + F_{11} + F_{12} + F_{13}$$

$$F_{III} = F_{14} + F_{15} + F_{16}$$

where  $F_1 \dots F_{16}$  is the area of the external heat transfer surfaces of individual elements with positions 1-16;  $T_1$ ,  $T_2$  and  $T_3$  - temperature rises in areas defined by these expressions

$$T_1 = \tilde{T}_1 - T_{atraf-muhit}, T_2 = \tilde{T}_2 - T_{atraf-muhit} \text{ va } T_3 = \tilde{T}_3 - T_{atraf-muhit}$$

$i_1, i_2$  va  $i_3$  - a is the specific heat capacity of the sections; it is defined by the following expressions:

$$i_1 = \sum_{j=1}^P c_j m_j, \quad i_2 = \sum_{g=1}^n c_g m_g \text{ va } i_3 = \sum_{y=1}^k c_y m_y$$

Where is  $c_j$ ,  $c_g$ ,  $c_y$  - the mass heat capacity of materials;  $m_j$ ,  $m_g$ ,  $m_y$  - mass of materials;  $Q_{B1}$ ,  $Q_{B2}$  and  $Q_{B3}$  are the average indicators for the period of heat release in time units, which are determined by the following expressions.

$$Q_{B1} = p_1 \frac{Q_1}{\eta_{numum f.i.k}} - Q_{B2}, Q_{B2} = p_2 * Q_2, Q_{B3} = p_3 * Q_3$$

Here is  $p_1$  - the pressure at the pump outlet;  $Q_1$ ,  $\eta_{numum f.i.k}$  - actual flow and total efficiency factor of the pump;  $p_2, Q_2$  - pressure and flow in the second section;

$p_3, Q_2$  —pressure and flow in the third section;  $\theta_1, \theta_2, \theta_3$  —the average specific heat flows between sections for each cycle (depending on the temperature level) are determined by the expression.

$$\theta_1 = Q_1 \rho_{suy} c_{suy}, \theta_2 = Q_2 \rho_{suy} c_{suy}, \theta_3 = Q_3 \rho_{suy} c_{suy}$$

If we insert the character

$$a_{11} = \frac{kF_1 + \theta_2}{i_1}, a_{22} = \frac{kF_2 + \theta_2}{i_2}, a_{13} = \frac{kF_3 + \theta_3}{i_3}. \quad (7)$$

$$a_{12} = -\frac{\theta_2}{i_2}, a_{21} = -\frac{\theta_2}{i_1}, a_{31} = -\frac{\theta_3}{i_1}, a_{23} = -\frac{\theta_3}{i_2}, a_{33} = -\frac{\theta_3}{i_3}$$

then the system of equations (6) can be written in the following form

$$\begin{cases} \frac{dT_1}{dt} + a_{11}T_1 - a_{21}T_2 - a_{31}T_3 = \frac{Q_{B1}}{i_1} \\ \frac{dT_2}{dt} - a_{12}T_1 + a_{22}T_2 - a_{23}T_3 = 0 \\ \frac{dT_3}{dt} + a_{13}T_1 - a_{33}T_2 = 0 \end{cases} \quad (8)$$

An approximate numerical solution to the system of equations (7) is based on the principle of dividing the entire duration of the transition process into small time intervals. During the selected time interval, the heat transfer parameters are assumed to be constant and equal to the values they take at the reached temperature. Thus, for each time interval, constant integration, stationary temperature, etc. are calculated. The calculation error can always be reduced to the error of the original data by reducing the size of the segments.

## References:

- [1] Shermukhamedov A.A, Astanov B.J, Tojiboyev Sh.I. Modeling of Thermal Processes in Flow-Through Hydraulic Drives Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2022), The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
- [2] Sh. I. Tojiboyev DETERMINATION OF THE MAIN INDICATORS OF THE ENGINE COOLING SYSTEM European Journal of Emerging Technology and Discoveries ISSN (E): 2938-3617 Volume 1, Issue 3, June, 2023.
- [3] Shermuhamedov A.A., Tojiboyev Sh.I., Xametov Z.M. Qishloq xo'jaligi mashinalarining suyuqlik yordamida sovutish tizimining tahlili. Farg'ona politexnika instituti ilmiy texnika jurnali 2022 yil
- [4] Tojiboyev Sh.I Actual problems of modern science and innovation in the central Asian region "Journal of technical science and innovation Ltd." Иқлим шароитининг автомобил радатори самарадорлигига таъсири 304-307 papers
- [5] Tojiboyev Sh.I. CE-220 paxta terish mashinasining sovutish ventilyatori aerodinamikasi tahlili "Yosh ilmiy tadqiqotchi" I xalqaro ilmiy-amaliy anjuman. 2022-yil 1-2-aprel 800-802-betlar.
- [6] Tojiboyev Sh.I, Nosirjonov Sh. "Тракторлар совутиш тизимиning эксплуатацион синовлари таҳлили" Международный научно-образовательный электронный журнал «Образование и наука в XXI веке» ISSN:2658-7998
- [7] Shermukhamedov, A., Annakulova, G.K., Astanov, B.J., Akhmedov, S.A.: Mathematical modeling of a hydraulic hitched system of gantry tractor with high clearance used in

horticulture and viticulture. VII International Scientific Conference integration, partnership and innovation in construction science and education (IPICSE-2020) from 11 to 14 of November(2020)

- [8] Sh.I. Tojiboyev CE-220 paxta terish mashinasining sovutish ventilyatori aerodinamikasi tahlili. "YOUNG RESEARCHER" COLLECTION OF ARTICLES OF THE 1ST INTERNATIONAL SCIENTIFIC - PRACTICAL CONFERENCE 2022.
- [9] Abdukhalilovich, I. I., & Abdujalilovich, J. A. (2020). Description Of Vehicle Operating Conditions And Their Impact On The Technical Condition Of Vehicles. The American Journal of Applied sciences, 2(10), 37-40.
- [10] Abdujalilovich, A. J. (2022). Analysis of road accidents involving children that occurred in fergana region. Innovative Technologica: Methodical Research Journal, 3(09), 57-62.
- [11] Axunov, J. A. (2022). Analysis of young pedestrian speed. Academicia Globe: Inderscience Research, 3(4), 1-3.
- [12] Abdujalilovich, A. J. (2022). Analysis of the speed of children of the 46th kindergarten on margilanskaya street. American Journal of Interdisciplinary Research and Development, 5, 9-11.
- [13] Axunov, J. A. (2022). Ta'lim muassasalari joylashgan ko 'chalarda bolalarning harakat miqdorini o 'zgarishi. Academic research in educational sciences, 3(4), 525-529.
- [14] Axunov, J. A. (2021). Piyodani urib yuborish bilan bog'liq ythlarni tadqiq qilishni takomillashtirish. Academic research in educational sciences, 2(11), 1020-1026.
- [15] Choriyev, X., & Axunov, J. (2022). Шаҳар йўловчи автомобиль транспорти тизимининг хизмат кўрсатиши сифатини таъминлаш жараёнининг функционал моделини ишлаб чиқиши (тошсаҳартрансхизмат аж таркибидаги автобус йўналишлари мисолида). Journal of Integrated Education and Research, 1(1), 440-453.
- [16] Axunov, J., & Tojiboyev, S. (2023). LOGISTIKA ORQALI MAHSULOTLARNI YETKAZIB BERISH TIZIMINI BOSHQARISH. Talqin va tadqiqotlar, 1(7).
- [17] Abdujalilovich, A. J., & Ibroximjon o'g'li, M. N. (2023). Methodology for Modeling the Efficiency of the Implementation of Objects to Improve the Transport Network of Tashkent City. Texas Journal of Engineering and Technology, 20, 23-26.
- [18] Axunov, J. A., & Tojiboyev , S. I. o'g'li. (2023). AVTOBUSLARDA YO'LOVCHILAR TASHISHNI TASHKIL ETISH. GOLDEN BRAIN, 1(14), 91-93.
- [19] Axunov, J. A., & Tojiboyev, S. I. (2023). ISUZU AVTOBUSLARINING YURISH QISMI ISHONCHLILIGINI TADQIQ ETISH. Educational Research in Universal Sciences, 2(5), 65-68.
- [20] Axunov, J. (2023). REQUIREMENTS FOR THE STRUCTURE AND DESIGN OF BODY BUSES AND CARS. International Bulletin of Engineering and Technology, 3(6), 67-72.
- [21] Axunov, J. A. (2023). AVTOBUSLAR VA YENGIL AVTOMOBILLAR KUZOVLAR TUZILISHIGA QO 'YILADIGAN TALABLAR. Educational Research in Universal Sciences, 2(5), 69-71.