

METHODOLOGY OF ORGANIZING THE METHODOLOGICAL SYSTEM OF PRACTICAL EDUCATION IN INFORMATICS ON THE BASE OF SPECIAL TECHNOLOGIES

Dadajonov is the son of Muhammadkadir Abdurakhman

Master of Andijan State Pedagogical Institute

Muydinova Madinakhan Alisherovna

Associate Professor of Andijan State Pedagogical Institute

<https://doi.org/10.5281/zenodo.8420979>

Abstract: This article discusses the topic of "Informatics practical training methodical system of special technology organization groups". Techniques and methods are presented on how to structure practical training in computer science.

Keywords: Informatics, methodology, electronic textbook, online platform, program.

The use of effective methods and methods in the teaching of computer science in the form of practical training has become an urgent issue of today. This methodology helps to learn the methods of organizing practical training based on special technologies. Organization of the methodical system of practical training in computer science based on special technologies can be divided into several stages:

1. Introduction: Begin by introducing the topic and explaining the importance of hands-on training in computer science and the use of specific technologies in the field.
2. Literature review: A comprehensive review of the existing literature on practical training in computer science and special technologies. This will help identify gaps in existing knowledge and provide a framework for your learning.
3. Research objectives: Specify the objectives of the study, such as evaluating the effectiveness of using special technologies in practical training or developing a new methodological system for teaching computer science.
4. Methodology: Describe the methodology you will use to achieve your research objectives. This may include conducting surveys or interviews with computer science teachers and students, analyzing existing curricula and teaching materials, or developing and implementing new practicum programs.
5. Data Collection: Collect relevant data to support your study. This may include gathering feedback from computer science teachers and students, analyzing test scores or performance evaluations, or observing practice sessions.
6. Data Analysis: Analyze the collected data using appropriate statistical or qualitative analysis methods. It helps to draw a conclusion about the effectiveness of special technologies in practical training or to determine directions for improving the methodological system.
7. Results and Discussion: Present your findings and discuss their implications for computer science practice. Compare your results with existing literature and make recommendations for future research or improvement of the methodological framework[1].

By following these steps, you can effectively organize your studies on the development of a methodological system of practical training in informatics using special technologies.

As a first step, the specific technologies needed in this methodology should be selected. It will consist of technologies, programs, platforms and tools used to organize practical training and make training processes more efficient. For example, Microsoft Office package, interactive calendar and online programs can be used to organize practical training in computer textbooks.

The next step is to teach students how to use special technologies. The teacher sets up the processes of organizing and working with students through electronic textbooks. In this process, students are required to use the interactive curriculum, complete tasks electronically, and experiment with computers to calculate results.

In the third step, opportunities are created to evaluate and track students' practical activities through special technologies. After the students have solved the initial tasks, they are required to collect data, calculate and analyze the results. In this process, students can learn techniques for using databases, creating statistics and graphs, and analyzing data[2].

At the end, the presentation and evaluation processes of practical training organized on the basis of special technologies are determined. Students test their knowledge through random questions or quizzes and use e-textbooks or online platforms to help with results.

This method provides convenience and efficiency in organizing practical training in computer science. Special technologies release students' interests and increase their practical skills. At the same time, this methodology creates an interactive, interesting and effective learning process for students. This method is aimed at using technology to improve students' knowledge and skills. One of the advantages of this method over traditional teaching methods is that it encourages active student participation. By using technology, students can learn information in a more interactive and interesting way.

There are some steps to implement this method.

The first step is to set goals. Teachers need to be clear about what they want students to achieve.

The second stage is the selection of appropriate technology tools. At this stage, the software or hardware to be used should be determined.

The third stage is to ensure the active participation of students. Teachers can engage students by giving them different tasks and responsibilities. Students can also work together through groups or projects.

The fourth step is to monitor student progress. Teachers should provide frequent feedback to monitor students' progress and identify their needs[3].

In this way, they can strengthen the weak points of the students and help them more. By using this method, it is possible to help students develop their knowledge and skills by encouraging their active participation. The method of organizing a methodical system of practical education in informatics based on special technologies includes the following stages:

1. Analysis of educational needs and goals. At this stage, the requirements for the level of preparation of students, the goals and tasks of teaching, as well as the main competencies that should be formed in students are determined.
2. Development of the curriculum. Based on the analysis of educational needs and goals, a curriculum is developed that includes lesson topics, work methods and forms, as well as assessment tools.

3. Definition of special technologies. At this stage, special technologies used in computer science classes are defined. These can be interactive programs, computer games, electronic textbooks, etc.
4. Preparation of educational materials. After identifying the special technologies, it is necessary to prepare the educational materials used during the lessons. It can be presentations, text materials, assignments, etc.
5. Organization of lessons. At this stage, computer classes are organized with the help of special technologies. The teacher uses the prepared educational materials and working methods to achieve the set goals and learning objectives.
6. Evaluation of educational results. After the training, the learning outcomes of the students should be evaluated. For this, various assessment methods are used, for example, testing, performance of practical tasks, analysis of design works, etc.
7. Analysis of the results and correction of the training program. After evaluating the learning outcomes, the obtained data is analyzed and the curriculum is adjusted according to the identified deficiencies or needs of the students[4].

In conclusion, summarize the main results of your research, and we can see their importance in the development of the field of practical training in informatics based on special technologies. Thus, the method of organizing the methodical system of practical education in informatics based on special technologies includes all the necessary stages, starting from the analysis of needs and educational goals, to the analysis of the results and the correction of the curriculum.

References:

1. Amridinov S.A., Suyarshayev M.M. Recommendations for pedagogical practice. - Samarkand: SamDU publication, 2009. - 24 p.
2. Isokov I., Informatics teaching technologies and design science texts. Gulistan, 2017.
3. Isakov I., Kulmamatov S.I. Innovative technologies in the process of teaching computer science. Educational and methodological complex. Gulistan, 2014.
4. Haydarova O. Preparing future teachers for a technological approach to the educational process. Ped. science. nom. Dissertation.-Vash: 2004.-159b.