

SUBADDITIVE MEASURE ON JORDAN ALGEBRAS

Кодиров Комилжон Ракимович

Ферганский Государственный Университет Кандидат физико-математических наук, доцент Tel: +998904075594 e-mail: kkodirov65@mail.ru

Рузиков Махаммаджон Мамирали ўғли

Преподаватель кафедры математики Ферганского государственного университета

Tel: +998911200575 e-mail: ruzikov91u@mail.ru

Кодирова Хайитгул Кубаевна

Преподаватель Олтиариқ ХТБ 4-ИДУМ

Зайнололобидинова Хумора Рахмиддин қизи

Студент Ферганского государственного университета https://doi.org/10.5281/zenodo.8128893

Annotation

This article proves that the topological Jordan algebra of measurable elements with respect to sub additive measure is an OJ - algebra.

Keywords: algebra, trace, functional, idempotent, measure, support, space, topology, states.

Let **A** be a finite IBW algebra, τ be an exact normal finite trace on **A**. Let m be a subadditive measure on A. From the results [2-3] it follows that m can be represented as $m(x) = \gamma(\tau(x))$. Let N be the space of normal functionals on A.

Lemma 1. Set
$$S = \bigcup_{n=1}^{\infty} \{ g \in N : -nm \le g \le nm \ \text{ } \mu a \ \nabla \}$$

is dense in the Banach space N , where $g \leq nm$ on ∇ means that $g(e) \leq nm(e)$ for any $e \in \nabla$.

Proof . If S is not dense in N , then there exists a continuous linear functional x_0 on N such that $x_0 \neq 0$. $g(x_0) = 0$ for everyone $g \in S$. Since it is $g(x_0) = 0$ equivalent to the equality $g(r(x_0)) = 0$, where $r(x_0)$ is the support of the element x_0 , it suffices to prove that $r(x_0)=0$. It is easy to see that $\tau \leq m$ on ∇ . The functional $\tau_e(x)=\tau(ex)$ also belongs to the set S. By assumption $g(r(x_0)) = 0$, for any $g \in S$ and in particular $\tau_e(r(x_0))=0, \ \ \forall e\in \nabla$. Letting $e=r(x_0)$ we have that $\tau(r(x_0))=0$. Due to accuracy, we τ conclude that $r(x_0) = 0$. This means that $x_0 = 0$. Therefore, $x_0 = 0$. The lemma is proven.

Let **A** - IBW - algebra, ∇ be the set of idempotents of **A**. m is a finite subadditive measure on **A**, t is the topology of convergence in measure m.

Theorem 1. If the sequence of elements $\{x_n\} \subset \mathbf{A}$ t-c tends to zero and is bounded on the norm ($||x_n|| \le 1$, n = 1, 2, ...), then it *-weakly converges to zero in **A**.

and $|g(U_{e_n}x_n)| \le |U_{e_n}x_n| |g(1) \le \varepsilon$. Let us estimate the second term. Because $U_{e_n,1-e_n}x_n=2(1-e_n)(e_nx_n)$, then due to the Schwartz inequality $|g(U_{e_n,1-e_n}x_n)| \le 2\sqrt{g(e^{\perp})g((e_nx_n)^2)} \le$

$$\leq 2\sqrt{g(e^{\perp})} \sqrt{\|e_n x_n\|^2} \leq 2\sqrt{k_0 m(e^{\perp})} \|x_n\| \leq 2\sqrt{k_0} \sqrt{\delta}.$$

 $m(e_n^{\perp}) \leq \delta$, $||U_e x_n|| \leq \varepsilon$, $n \geq n_0$.

Taking into account the equality $U_{1-e_n}x_n=(1-e_n)(x_n-2e_nx_n)$, it similarly turns out that $\mid g(U_{1-e_{-}}x_{n})\mid \leq 3\sqrt{k_{0}} \ \sqrt{\delta}$. By virtue of arbitrariness , \mathcal{E},δ this implies that $g(x_{n})\to 0$.

Proof. Let $x_n \xrightarrow{t} x$ i.e. for any $\varepsilon, \delta > 0$ there is a number n_0 such that

Let now $f \in N$ be an arbitrary normal state. By Lemma 1 , for any $\eta > 0$ there exists $g \in S$ such that $||f - g|| \le \eta$. Then if $g(e) \le k_0 m(e)$, then for $n \ge n_0$ we have:

$$\begin{split} &|f(x_n)| \leq |(f-g)(x_n)| + |f(x_n)| \leq ||f-g|| \, ||x_n|| + + |g(x_n)| \leq \eta + \varepsilon + 7\sqrt{k_0} \, \sqrt{\delta} \text{ , i.e.} \\ &|f(x_n)| \rightarrow 0 \text{ . So, it } x_n \rightarrow 0 \quad \text{*-weakly. The theorem has been proven.} \end{split}$$

Theorem 2. The algebra \mathbf{A} is a universal OJ - algebra, the set of bounded elements of which coincides with A.

Proof. In terms of continuity in the topology t of the operation of multiplication in A, the set of $\widehat{\mathbf{A}}^+$ all squares of elements from $\widehat{\mathbf{A}}$ is the t - closure of the cone $\mathbf{A}^+ = \{a^2, a \in \mathbf{A}\}$ JBW are algebras **A**. The cone $\widehat{\mathbf{A}}^+$ defines a $\widehat{\mathbf{A}}$ partial order, which obviously satisfies axioms 1), 2), 4) of the definition of a partial order and induces the initial partial order on A.

The proof of the second part of the theorem (i.e., the set of bounded elements of ${\bf A}$ which coincides with **A**) is carried out similarly to the proof of the theorem from [1].

Let be $\widehat{\mathbf{A}}_0$ an arbitrary maximal strongly associative subalgebra \mathbf{A} . Due to t being the continuity of multiplication in \mathbf{A} , subalgebra $\widehat{\mathbf{A}}_0$ closed. Let $K = \{a \in \widehat{\mathbf{A}}_0, a \ge 0\}$. The set of elements of the form $(1+x)^{-1},\ x\in K$, is contained, as noted earlier, in ${\bf A}$. Since all are $x \in \widehat{\mathbf{A}}_0$ compatible, then by Lemma 1.3.2 from [1] the family is $\{(1+x)^{-1}, x \in K\}$ compatible. Let A_0 be a maximal strongly associative subalgebra A containing this family. By

virtue of the corollary of Theorem 1.2.2 . in [1], \mathbf{A}_0 is a topological semifield. If A_0 the closure \mathbf{A}_0 in $\widehat{\mathbf{A}}$, then due to completeness $\widehat{\mathbf{A}}$, $\widehat{\mathbf{A}}_o$ is a complete topological semifield and hence a universal semifield . Obviously, it is \overline{A}_0 strongly associative in $\widehat{\mathbf{A}}$. Let's show that $\overline{A}_0 = \widehat{\mathbf{A}}_0$. Since $\widehat{\mathbf{A}}_o$, it suffices to check that $\widehat{\mathbf{A}}_0 \subset \overline{A}_0$.

Let $x\in K$, then $(1+x)^{-1}\in \mathbf{A}_0$ by definition $\mathbf{A_0}$. The carrier r(z) of the element $z=(1+x)^{-1}$ is equal to one. Indeed,

$$z^{2}(1-r(z)) = U_{z}(1-r(z)) = 0;$$

applying the operator to this equality $U_{1+x}=U_z^{-1}$, we obtain $1-r(z)=\theta$, i.e. r(z)=1. Since in the universal semifield every element with support equal to one is invertible, then in the semifield \bar{A}_0 exists z^{-1} . Due to the uniqueness of the inverse element in the Jordan algebra.

$$(1+x)=z^{-1}\in \overline{A}_0$$
 , i.e. $x\in \overline{A}_0$, i.e. $K\subset \overline{A}_0$.

For any $x \in \overline{A}_0$ we have

$$x = \frac{1}{2}(1+x)^2 - x^2 - 1 \in K - K - K \subset \overline{A}_0$$
 those. $\widehat{A}_0 = \overline{A}_0$.

Thus, we have proved that every maximal strongly associative subalgebra A is a universal semifield . In particular, axioms 3) and (II) $O\!J$ are algebras for $\hat{\bf A}$.

It remains only to verify the fulfillment of the axiom (I). Let be $\{x_{\alpha}\}$ an increasing network of elements bounded from above in $\hat{\mathbf{A}}$. We can assume that $\theta \leq x_{\alpha} \leq x$ for all α . There is $a = (1+x)^{-1} \in \mathbf{A}$. By virtue of the positivity of the operator U_a in $\hat{\mathbf{A}}$ and, therefore, in $\hat{\mathbf{A}}$, the network is $\{U_a x_a\}$ increasing and bounded from above by the element $U_a x = (1+x)^{-2} x \leq 1$. Therefore, $\{U_a x_a\} \subset \mathbf{A}$ and therefore in \mathbf{A} exists $b = \sup U_a x_a$. Then, obviously, the element $x_0 U_a^{-1} b = U_{1+x} b$ is the least upper bound for $\{x_a\}$.

Let us show that $x_a \to x_0$ in the topology t. Since $U_a x_a \uparrow b$ in JBW- algebra $\mathbf A$ and for monotone networks in JBW - algebras, the concepts of ordinal, *- weak and strong convergence coincide, then $U_a x_a \to b$ strongly, i.e. $\rho((U_a x_a - b)^2) \to 0$ for any normal state ρ . In particular, $\tau((U_a x_a - b)^2) \to 0$ for any $\mathcal E, \delta_1 > 0$ there exists a_{ℓ} such that $\tau((U_a x_a - b)^2) \le \mathcal E^2 \delta_1$ for $a \ge a_0$. From here, as in the proof of Theorem 1.8.3, it follows that $(U_a x_a - b) \in N(\mathcal E, \delta)$, with respect to the subadditive measure, i.e., $U_a x_a \to b$ in the topology t. Since multiplication in the Jordan algebra $\widehat{\mathbf A}$ is continuous in the topology t, then

$$x_a = U_{1+x}U_a x_a \xrightarrow{t} U_{1+x}b = x_0$$

If now $y \in \hat{\mathbf{A}}$ and $y \leftrightarrow x_a$ for any a, then, due to the continuity of multiplication in $\hat{\mathbf{A}}$ and the fact that $x_a \xrightarrow{t} x_0$, it follows that $y \leftrightarrow x_0$, which proves the fulfillment of the **A** axioms (I) *OJ* - algebras. The theorem has been proven.

It follows from this theorem that in the case of finite *IBW*-algebras 01- algebras of measurable elements constructed from the trace [1] and from finite subadditive measures coincide.

References:

- 1. Кодиров К., Йигиталиев Й. Топология сходимости по мере на-алгебрах //Экономика и социум. – 2020. – №. 1. – С. 491-495.
- 2. Кодиров К., Йигиталиев Й. Инновационный метод обучения высшей математике //Экономика и социум. – 2020. – №. 4. – С. 71.
- 3. Kodirov K. R., Nishonbaev A. S. On the scientific basis of forming students' logical competence //ACADEMICIA: An International Multidisciplinary Research Journal. - 2021. - T. 11. – №. 3. – C. 123-128.
- 4. Raximovich K. K. et al. Some Methods for Solving Fourth-Order Equations //International Journal of Innovative Analyses and Emerging Technology. – 2022. – T. 2. – №. 4. – C. 127-130.
- 5. Kodirov K. R. et al. COMPETENCE-BASED APPROACH IN TEACHING SOME ELEMENTS OF MATHEMATICS LESSON DESIGN METHODOLOGY //Scientific Bulletin of Namangan State University. - 2020. - T. 2. - №. 9. - C. 390-394.
- 6. Кодиров К., Йигиталиев Й. ФИНАНСОВАЯ ГРАМОТНОСТЬ С ЭЛЕМЕНТАРНОЙ МАТЕМАТИКОЙ //Экономика и социум. – 2020. – №. 4. – С. 435-438.
- 7. Кодиров К., Йигиталиев Й. -ИЗМЕРИМЫЕ ОПЕРАТОРЫ НА-АЛГЕБРАХ //Экономика и социум. - 2020. - №. 1. - С. 485-490.
- 8. Komiljon K., Yuldoshali Y. Subadditive measure on projectors of von neumann algebra //International Journal on Integrated Education. – T. 3. – №. 1. – C. 26-28.
- 9. Komiljon K., Yuldoshali Y., Begzod S. Communication of sab additive measures on Jordan banach algebra //International Journal on Integrated Education. – T. 3. – №. 1. – C. 29-31.
- 10. Raximovich, K. K., & Shokirjon o'g'li, T. T. (2022). OJ-ALGEBRA OF MEASURABLE ELEMENTS WITH RESPECT TO A SUBADDITIVE MEASURE ON JORDAN ALGEBRAS. European Journal of Interdisciplinary Research and Development, 4, 19-21.
- 11. Khursanalievich, K. U., Ugli, T. T. S., & Askarali, M. (2022). DRAWING AND IMAGE MODELS TOOL MATH LEARNING OPTIONS. American Journal of Applied Science and Technology, 2(09), 26-34.
- 12. Kodirov, K., Nishonboyev, A., Ruzikov, M., & Tuxtasinov, T. (2022). SUBADDITIVE MEASURE ON VON NEUMANN ALGEBRAS. International scientific journal of Biruni, 1(2), 134-139.
- 13. Кодиров, К. Р., Тухтасинов, Т. Ш., & Йўлдошали, Й. У. (2021). Связь топологии сходимости по мере на алгебрах Фон Неймана. Вестник магистратуры, 7.
- 14. Abdumannopov, M. M., Akhmedov, O. U., & Tokhtasinov, T. (2022). ESSENTIAL MODES FOR ACTIVATING MASTERING SUBJECTS AT SCHOOLS. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 3(12), 1-4.

IBAST | Volume 3, Issue 7, July

INTERNATIONAL BULLETIN OF APPLIED SCIENCE AND TECHNOLOGY UIF = 8.2 | SJIF = 5.955

IBAST ISSN: 2750-3402

- 15. Nishonboyev, A., Tukhtasinov, T., & Ro'zikov, M. (2023). WAYS TO FORM INDEPENDENT THINKING OF STUDENTS IN THE PROCESS OF TEACHING MATHEMATICS. International Bulletin of Medical Sciences and Clinical Research, 3(3), 49-51.
- 16. Рузиков, М. (2022). Уч ўлчовли Лаплас тенгламаси учун ярим чексиз параллелепипедда нолокал чегаравий масала. Yosh Tadqiqotchi Jurnali, 1(5), 128-137.
- 17. Kodirov, K., Nishonboyev, A., Ruzikov, M., & Alimov, Z. (2022). Formation of students'knowledge and skills in the educational process based on the active approach. International scientific journal of Biruni, 1(2), 339-344.