

THE PROBLEM OF DELIVERY OF COTTON RAW FLOWS THROUGH MINIMUM COST TRANSPORTATION

Kuziev A.U.

candidate of technical sciences, docent, Termez State University

Suyunov O.D.

Teacher of Termez State University

<https://doi.org/10.5281/zenodo.7812868>

Abstract: In the article, the formulation, model, real distribution of the problem of transportation of raw cotton through the optimal road network and their optimal solution are considered. Also, the supply flow of cotton raw materials in the cotton ginning industry was analyzed.

Key words: Transportation problem, radial directions, optimization, freight transportation.

Agriculture of the Republic of Uzbekistan is specialized in the cultivation of raw cotton. Due to this, there is a need to determine the shortest length of low-cost road schemes for the transportation of raw cotton streams. This is because the flow of material delivered along the shortest path network is cost-effective and brings high efficiency.

Combinatorics methods were used to transport cotton raw materials from cotton receiving points to cotton factories in radial directions [1].

Cases observed in the application of radial directions in the transportation of goods [3, 5] were studied in scientific works, and the issue of reducing the costs of motor transport enterprises and increasing the quality of service was considered.

The problem of optimization of cotton raw material flows is formulated as follows.

The set of numbers of cotton raw material sending places is $I = \{1, 2, \dots, i, \dots, m\}$ and the set of cotton raw material receiving points is $J = \{1, 2, \dots, j, \dots, n\}$. The distances between all i -numbered cotton processing facilities (CPF) and j -digital cotton receiving points (DCRP) are known by the l_{ij} matrix $\|l_{ij}\|_{ij}$. In addition, each shipper's i -numbered CPF cotton raw material shipment volume a_i and j -numbered DCRP's raw material processing requirement b_j values are given. The mathematical model of the cotton raw material flow optimization problem is expressed as follows.

It is necessary to determine such positive values of raw cotton flow between each i and j , i.e

$$X_{ij} \geq 0, \quad i \in I, \quad j \in J, \quad (1)$$

where the flow of cotton raw materials transported from each i CPF to all $j \in J$ DCRPs $\sum_j X_{ij}$ does not exceed its shipping capacity a_i

$$\sum_{j \in J} X_{ij} \leq a_i, \quad i \in I, \quad (2)$$

the flow of cotton raw materials transported to each j DCRP $\sum_i X_{ij}$ should not exceed its raw material processing capacity b_j

$$\sum_{i \in I} X_{ij} \leq b_j, \quad j \in J \quad (3)$$

The volume of transport work in carrying out cotton raw material transportation flows between the sending and receiving addresses should be at least $\sum_i \sum_j X_{ij} l_{ij}$

$$\sum_{i \in I} \sum_{j \in J} X_{ij} l_{ij} \rightarrow MIN \quad (4)$$

In the above model of the transport problem, the limiting conditions (1, 3) are in the form of inequality or equality, and if $\sum_i a_i = \sum_j b_j$ equality exists, such models are called closed

models. In order to determine the quantitative solutions of the above-mentioned problems, it is necessary to transform them into a model consisting only of equations in their open form, that is, limiting conditions. For this, an artificial Y_{ij} is introduced to the right-hand side of conditions 2 and 3, and these expressions are converted into equations, i.e.

$$\sum_{i \in I} (X_{ij} + Y_{ij}) = a_i; \quad (2^1)$$

$$\sum_{j \in J} (X_{ij} + Y_{ij}) = b_j; \quad (3^1)$$

$$\sum_{i \in I} \sum_{j \in J} (X_{ij} + Y_{ij}) l_{ij} \rightarrow MIN; \quad (4^1)$$

The flow of cotton raw materials is sent from cotton processing facilities to cotton receiving points. It takes into account the division of the regional territory into districts, that is, the attachment of cotton processing centers to cotton receiving points is carried out taking into account the administrative division of the regions. As a result, the average freight transportation distance and the total volume of completed transport work, measured in ton km, will increase. Optimizing the flow of cotton raw material that needs to be transported allows you to determine a plan that provides a minimum of transportation work.

In general, the process of transporting raw cotton to cotton gins consists of the following stages:

- 1) transportation of cotton raw materials from cotton fields to cotton processing facilities;
- 2) transportation of raw material from cotton processing facilities to cotton ginning plants;
- 3) transportation of raw materials from cotton fields to cotton gins.

The optimization problem of cotton raw material flows is formally expressed in the form of a linear programming transport model. We formulate the transport problem necessary to optimize cotton raw material flows (Table 1).

Table 1

Distribution of cargo flows between the consignee and the consignor

Table 1
Distribution of cargo flows between the consignee and the consignor

Shipper (<i>i</i>)	Consignor (<i>j</i>)				<i>a_i</i> tons
		1st cotton point	2nd cotton point	3rd cotton point	
1 farm		12 120	8	21	120
2 farm		20 60	13	7	60
3 farm		55 8 20	19	12	75
4 farm		11	7 55	22	55
5 farm		15 80	14	6	80
6 farm		17 40	10 45	14	85
7 farm		9	15 75	10	75
<i>b_j</i> tons		175	200	175	550

We get 3 cotton receiving points (DCRP) and 7 cotton processing facilities (CPF) as consumer destinations. We determine the distances between each DCRP and CPF based on the current road network. These distances in Table 1 are written in the upper right corner of the corresponding *ij* cells of the matrix. We determine the current transportation volume X_{ij} and write it in the appropriate *ij* cells of Table 1. We define X_{ij} as the sum of the b_j volume in the matrix cells by columns, and a_i by rows (Table 1).

Now we calculate the value of the load cycle in tkm according to the distribution of load flows in Table 1.

$$\begin{aligned}
 P_{\text{actual}} = & X_{11} \cdot \ell_{11} + X_{22} \cdot \ell_{22} + X_{31} \cdot \ell_{31} + X_{32} \cdot \ell_{32} + X_{43} \cdot \ell_{43} + X_{52} \cdot \ell_{52} + X_{62} \cdot \ell_{62} + \\
 & + X_{63} \cdot \ell_{63} + X_{73} \cdot \ell_{73} = 120 \cdot 12 + 60 \cdot 13 + 55 \cdot 8 + 20 \cdot 19 + 55 \cdot 22 + 80 \cdot 14 + 40 \cdot 10 + \\
 & + 45 \cdot 14 + 75 \cdot 10 = 7150 \text{ tkm}
 \end{aligned}$$

We calculate the average 1 t freight distance ($\bar{l}_{\text{actual}}^{\text{yp}}$) corresponding to the actual distribution of cargo flows:

$$\bar{l}_{\text{actual}}^{\text{yp}} = \frac{P_{\text{actual}}}{Q_{\text{actual}}} = \frac{7150}{550} = 13 \text{ km}$$

Solving the transport issue consists of two stages:

- 1) creating an initial base plan;
- 2) optimization of the initial plan.

Table 2

Optimal distribution of cargo flows between the consignee and the consignor

Shipper (i)	Consignor (j)	a _{ij}			a _i tons
		1 cot. point	2 cot. point	3 cot. point	
1 farm	12	25	12	95	120
2 farm	7		20	13	60
3 farm	8	75	8	19	12
4 farm	11		11	55	75
5 farm	6		15	14	80
6 farm	14		17	50 10	35 14 85
7 farm	9	75	9	15	10 75
<i>b_i</i> tons		175	200	175	550

Now let's calculate the transportation work (P_{onm}) and average transportation distance of 1 ton for the found optimal plan of cargo flows (Table 2).

$$P_{\text{амал}} = X_{11} \cdot \ell_{11} + X_{12} \cdot \ell_{12} + X_{23} \cdot \ell_{23} + X_{13} \cdot \ell_{13} + X_{42} \cdot \ell_{42} + X_{53} \cdot \ell_{53} + X_{63} \cdot \ell_{63} + X_{62} \cdot \ell_{62} + X_{71} \cdot \ell_{71} = 25 \cdot 12 + 60 \cdot 7 + 75 \cdot 8 + 55 \cdot 7 + 50 \cdot 10 + 80 \cdot 6 + 35 \cdot 14 + 45 \cdot 14 + 95 \cdot 8 = 4610 \text{ tkm}$$

Average shipping distance corresponding to the optimal plan of cargo flows ($l_{\text{onmum}}^{\text{yp}}$)

$$l_{\text{onmum}}^{\text{yp}} = \frac{P_{\text{onm}}}{Q_{\text{амал}}} = \frac{4610}{550} = 8,38 \text{ km}$$

The reduction of the applied load currents in relation to the average transport distance Δl_{yp} is defined as follows:

$$\Delta l_{\text{yp}} = l_{\text{амал}}^{\text{yp}} - l_{\text{онмум}}^{\text{yp}} = 13 - 8,38 = 4,62 \text{ km}$$

The load cycle reduction ΔP is determined as follows:

$$\Delta P = P_{\text{амал}} - P_{\text{onm}} = 7150 - 4610 = 2540 \text{ tkm}$$

Reduced excess transportation costs ΔC is found as:

$$\Delta C = \Delta P \cdot S_{\text{мкм}} = 2540 \cdot 42000 = 106680000 \text{ сўм.}$$

Thus, according to the results of our considered example of optimization of cotton raw material flows, it was determined that the average transportation distance of 1 t of cargo will be 4.62 km, the cargo turnover will be 2540 tkm, and the transportation costs will be reduced by 106680000 soums. This, in turn, in the conditions of current market competition, meeting the needs of consumers for transportation using the most effective technologies increases the competitiveness of enterprises.

References:

- Жураев, М. Н. (2019). ТЕОРЕТИЧЕСКИЕ ПРЕДПОСЫЛКИ ДЛЯ ПРИМЕНЕНИЯ КОМБИНАТОРНОГО МЕТОДА ДИСКРЕТНЫХ РЕШЕНИЙ ЗАДАЧИ РАЦИОНАЛЬНОГО РАСПРЕДЕЛЕНИЯ АВТОТРАНСПОРТНЫХ СРЕДСТВ ПО РАДИАЛЬНЫМ МАРШРУТАМ. In СОВРЕМЕННАЯ НАУКА: АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ (pp. 21-26).

2. Бўтаев Ш.А., Мирзаахмедов Б.М., Жўраев М.Н., Дўрмонов А.Ш., Баҳодиров Б. Ташиш жараёнларини моделлаштириш ва оптималлаштириш.-Тошкент: ФАН, 2009.-237 6.

3. Қўзиев, А. Ў., & Муратов, А. Х. (2021). ЮК ЖЎНАТУВЧИЛАРГА ТРАНСПОРТ ХИЗМАТИ КЎРСАТИШНИ ТАКОМИЛЛАШТИРИШ. *Scientific progress*, 2(2), 846-855.

4. Бутаев, Ш. А., Сидикназаров, К. М., Муродов, А. С., & Кузиев, А. У. (2012). Логистикс.

5. Urokovich, K. A., & Dostmurodovich, S. O. (2022). Issuing the Plan for the Development of the Automobile Road Network. *International Journal of Inclusive and Sustainable Education*, 1 (5), 195-201.

6. Qo'Ziyev, A. O. (2022). Development of rational routes in the transmission of small batch cargo. *Web of Scientist: International Scientific Research Journal*, 3(02), 889-898.

7. Kuziev, A. U. (2022). Methodology of development of the regional road network. *Web of Scientist: International Scientific Research Journal*, 3(5), 969-975.

8. Kuziyev A.U., Suyunov O.D., Xurramov K.B., Improving the quality of passenger service in city public transport. *International bulletin of engineering and technology*, Volume 2, Issue 12, 157-161